

MAVILLE PARK PTY LTD

Additional Site Investigation Report

12-22 & 24 Rothschild Avenue, Rosebery NSW

Report E22282 AB_Rev01 28 February 2017

REPORT DISTRIBUTION

Additional Site Investigation Report 12 - 22 & 24 Rothschild Avenue, Rosebery NSW

El Report No.: E22282 AB_Rev01 Date: 28 February 2017

Copie	S	Recipient
1 2	Soft Copy (PDF – Secured, issued by email) Hard Copies (sent by Express Courier)	Maville Park Pty Ltd 45 Noorbinna Crescent, NORTHBRIDGE NSW 2009
1	Soft Copy (PDF – Secured, issued by email)	Ms Rebeka Hall Zoic Pty Ltd Suite 4, Level 3, 105 Pitt Street, SYDNEY NSW 2000
	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009

Author

Ewoelder-

Emmanuel Woelders Environmental Scientist

Technical Reviewer

g. Brichle

Greg Brickle Snr Principal / Environmental Scientist

Revision	Details	Date	Amended By
	Draft	7 September 2016	-
0	Final - Revised as per auditor comments	20 January 2017	EW / GB
01	Revised as per auditor comments	28 February 2017	EW

© 2016 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

EXECUTIVE SUMMARY

Background

Mr Shen Xi Nan of Maville Park Pty Ltd engaged El Australia Pty Ltd (El) to conduct an Additional Site Investigation Report (ADSI) for further site characterisation purposes within a property located at 12 -22 & 24 Rothschild Avenue, Rosebery NSW ('the site'). This environmental assessment was completed as part of a development application process through City of Sydney Council to allow site development for residential with minimal access to soils land uses.

This assessment continues on from a previous Detailed Site Investigation Report (DSI) conducted by EI in September 2014 (Report No. E22282 AA_Rev1, 24th September 2014).

Objectives

The main objective of this assessment is to further characterise soil and groundwater at the site and address previously identified data gaps and contamination sources to assist in the preparation of a Remediation Action Plan. The primary objectives of this investigation were therefore:

- Undertake an additional site history survey including a search of Street Cards held by City Of Sydney Council to obtain a better understanding of former site uses and the associated contaminants of concern;
- Characterise soil and groundwater quality on the southern portion of the site (24 Rothschild Avenue), where access was previously limited during initial DSI works;
- Characterise groundwater conditions in the vicinity of the underground storage tank (UST) known to be located on the north western portion of the site; and
- Characterise groundwater conditions entering the site from the neighbouring properties to the north.

A further objective, should site contamination be confirmed, will be to make recommendations for the appropriate management of any contaminated soils and/or groundwater.

Findings

The work was conducted with reference to the regulatory framework outlined in **Section 1.3** of this report, and assessment findings indicated the following:

- The site comprised a broadly rectangular shaped block, covering a total area of approximately 0.84 hectares (8,403.3 m²). The site was bound by Rothschild Avenue to the east, Cressy Street to the south, Mentmore Avenue to the west, and residential and industrial buildings to the north;
- Current site use is predominantly commercial and light industrial;
- A review of Planning Street Cards available on the City of Sydney Council website, suggested the former site uses consisted of a variety of commercial and industrial activities including machinery merchants, timber storage, auto wiring and cables manufacturing, plywood manufacturing, assemblage of sheet metal, manufacturing electrical water heaters and used as a depot. Other key findings include; a 5000 gallon petrol tank was installed in the mid 1970's, an electrical substation was present in the late 70's and new roof sheeting was installed in 1982. Street planning cards were consistent with the previous site history survey undertaken (DSI of EI, 2014);

- On the basis of site history and search findings, EI consider potential chemical hazards and onsite contamination sources to be as follows:
 - Imported fill soils of unknown origin distributed across the site;
 - Impacts from previous light industrial manufacturing activities at the site;
 - Painted surfaces in relation to the structures (buildings) that are currently present on the site;
 - Potential Hazardous materials, including potential asbestos-containing materials (ACM) from former building products;
 - Potential pesticide use underneath building structures
 - Electrical substation present at the site;
 - Off-site sources of contamination, including EPA notified site located 30m north of the site and asbestos used in former tram line along;
 - Previously identified lead, PCB, TRH, PAH and Asbestos impacted fill (DSI of EI 2014); and
 - The abandoned underground petroleum storage systems (UPSS) present on the site.
- Based on the findings of the site contamination appraisal, the chemicals of concern (COC) at the site are considered to be:
 - Soil heavy metals (HMs), TRH, PAH, t monocyclic aromatic hydrocarbon compounds benzene, toluene, ethylbenzene and xylenes (BTEX), organochlorine and organophosphate pesticides (OCP/ OPP), polychlorinated biphenyls (PCB), volatile organic compounds (VOC), phenols and asbestos.
 - Groundwater HMs, TRH, BTEX, PAH, volatile organic compounds (VOC), including chlorinated VOC (VOCC) such as trichloroethylene (TCE) and phenols.
- Soil sampling and analysis were conducted at seven (7) targeted test bore locations (BH202M, BH206, BH207, BH208, BH209, BH210 and BH211) down to a maximum drilling depth of 5.8m BGL. These borehole locations targeted areas previously limited in access during DSI works (EI, 2014), including the heritage building located at 24 Rothschild Avenue;
- Three (3) additional groundwater wells were installed and sampled at targeted locations within the site, including an up-gradient location along the northern boundary (BH205M), the central portion of 12-22 Rothschild Avenue (BH203M), and a down-gradient location at 24 Rothschild Avenue (BH202M). Due to a buried concrete slabs in the vicinity of the abandoned UST and up-gradient of 24 Rothschild Avenue, groundwater wells BH201M and BH204M could not be installed due to drilling rig refusal;
- The sub-surface layers comprised of fill materials of various constituents, comprising brown sands and sandy clays, underlain by Botany Sands;
- Groundwater was encountered at depths ranging from 4.22 to 4.95 meters below ground level. Former monitoring wells MW1 and MW2 were found to be dry (likely due to siltation);

- Results of soil samples collected from soil test boreholes reported concentrations of the selected analytes to be below the adopted human health based and ecological based soil investigation levels;
- Results of the groundwater samples collected from the newly installed wells (BH202M, BH203M and BH205M) and previous monitoring well (MW3) reported concentrations of the selected analytes to be below the adopted marine and human health based groundwater investigation levels, with the exception of heavy metals (copper, nickel and zinc) and PCE. Concentrations of copper, nickel and zinc, were generally low and considered representive of background groundwater concentrations; and
- El consider the low concentrations of VOC compounds reported in groundwater is a low human health risk via vapour intrusion for future site users including residents, construction workers, maintenance and commercial workers. However due to the presence of chlorinated solvents in groundwater and the taking into consideration the site history, the need for future soil vapour sampling and subsequent risk assessment should be addressed in the Remediation Action Plan.
- On the basis of investigation findings the preliminary CSM discussed in **Section 5** was considered to have appropriately identified contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps outlined in **Section 5.4** have largely been addressed. However a further assessment of risks posed by potential groundwater contamination in the vicinity of the UST on the north eastern portion of the site must be undertaken should residual impacts be evident following UST removal.

Conclusions and Recommendations

Based on the findings of this report and with consideration of the Statement of Limitations (**Section 12**), El concludes that widespread contamination was not identified at targeted locations during this additional investigation. Soil concentrations did not exceed the adopted human health and ecological based criteria and groundwater quality at the site is considered a low environmental and human health risk. It is concluded that the site can be remediated for proposed residential use following the preparation and implementation of a Remediation Action Plan. The RAP will also need to consider the findings of the initial DSI (EI, 2014).

In view of the above findings and in accordance with the NEPM 2013 guidelines, it is considered that the site can be made suitable for the proposed residential development on completion of the following recommendations:

- Preparation and implementation of a Remediation Action Plan to outline the removal of the impacted fill material identified in the initial DSI (EI, 2014) and in removal of the abandoned UST. The RAP should also consider the need for further groundwater characterisation in the vicinity of the abandoned UST should residual contamination be observed during remediation of the UST. The RAP should also consider the need for future soil vapour testing and subsequent risk assessment.
- Any material being removed from site (including virgin excavated natural materials (VENM)) should be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines.

- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM.
- Validate that the remediated areas are free of contamination by comparing analytical results for excavated surfaces and any backfill material, against the respective EPA thresholds.
- Preparation of a final site validation report by a qualified environmental consultant, certifying suitability of the site for the proposed development.

CONTENTS

EXE	ECUTIVE SUMMARY	I
1.	INTRODUCTION	1
	1.1 BACKGROUND AND PURPOSE	1
	1.2 PROPOSED DEVELOPMENT	1
	1.3 REGULATORY FRAMEWORK	1
	1.4 PROJECT OBJECTIVES	2
	1.5 SCOPE OF WORKS	2
2.	SITE DESCRIPTION	4
	2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING	4
	2.2 SURROUNDING LAND USE	4
	2.3 REGIONAL SETTING	5
	2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE	1
~		7
3.	2.1 AVAILABLE DOCUMENTS	9
	3.1 AVAILABLE DOCUMENTS	9
4.		11
	4.1 SUMMARY OF ET HISTORY REVIEW (DSI, 2014)	11
_	4.2 PLANNING STREET CARDS	12
5.	CONCEPTUAL SITE MODEL	14
	5.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES	14
	5.2 CHEMICALS OF CONCERN	14
	5.4 DATA GAPS	16
6	SAMPLING ANALYTICAL AND QUALITY PLAN (SAQP)	17
0.	6.1 DATA QUALITY OBJECTIVES (DOO)	17
	6.2 DATA QUALITY INDICATORS	22
7	ASSESSMENT METHODOLOGY	23
	7.1 SAMPLING RATIONALE	23
	7.2 Investigation Constraints	23
	7.3 ASSESSMENT CRITERIA	23
	7.4 SOIL INVESTIGATION	25
	7.5 GROUNDWATER INVESTIGATION	27
8.	DATA QUALITY ASSESSMENT	30
9.	RESULTS	31
	9.1 SOIL INVESTIGATION RESULTS	31
	9.2 GROUNDWATER INVESTIGATION RESULTS	31
	9.3 LABORATORY ANALYTICAL RESULTS	33
10.	SITE CHARACTERISATION	37
	10.1 Additional Soil Characterisation	37
	10.2 ADDITIONAL GROUNDWATER CHARACTERISATION	37
	10.3 REVIEW OF CONCEPTUAL SITE MODEL	38
11.	CONCLUSIONS	39
12.	RECOMMENDATIONS	41
13.	STATEMENT OF LIMITATIONS	42

REFERENCES

ABBREVIATIONS

TABLES (In Text)

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	4
TABLE 2-2	SURROUNDING LAND USES	5
TABLE 2-3	REGIONAL SETTING INFORMATION	5
TABLE 2-4	SUMMARY OF BUILDINGS AND INFRASTRUCTURE	7
TABLE 3-1	SUMMARY OF PREVIOUS INVESTIGATION WORKS AND FINDINGS	9
TABLE 4-1	SITE HISTORY SUMMARY	11
TABLE 4-2	PLANNING STREET CARDS REVIEW	12
FIGURE 5-1	CONCEPTUAL SITE MODEL	15
TABLE 6-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	18
TABLE 6-2	DATA QUALITY INDICATORS (SUMMARY)	22
TABLE 7-1	ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER	24
TABLE 7-2	GENERIC AND DERIVED ECOLOGICAL INVESTIGATION LEVELS	25
TABLE 7-3	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	26
TABLE 7-4	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	27
TABLE 9-1	GENERALISED SUBSURFACE PROFILE (M BGL)	31
TABLE 9-2	MONITORING WELL CONSTRUCTION DETAILS	32
TABLE 9-3	GROUNDWATER FIELD DATA (GME DATE 17 AUGUST 2016)	33
TABLE 9-4	SUMMARY OF SOIL ANALYTICAL RESULTS	34
TABLE 9-5	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	35

TABLES

- TABLE T1 SOIL AND GROUNDWATER SAMPLE REGISTER
- TABLE T2
 SUMMARY OF SOIL INVESTIGATION RESULTS FOR HEAVY METALS
- TABLE T3 SUMMARY OF SOIL INVESTIGATION RESULTS FOR TPH, BTEX, NAPHTHALENE & VOCS
- TABLE T4 SUMMARY OF SOIL INVESTIGATION RESULTS FOR PAH & PHENOLS
- TABLE T5 SUMMARY OF SOIL INVESTIGATION RESULTS FOR OCP, OPP & PCB
- TABLE T6 SUMMARY OF SOIL INVESTIGATION RESULTS FOR ASBESTOS
- TABLE T7
 SUMMARY OF GROUNDWATER INVESTIGATION RESULTS

FIGURES

- FIGURE 1 LOCALITY PLAN
- FIGURE 2 BOREHOLE LOCATION PLAN
- FIGURE 3 INFERRED GROUNDWATER FLOW DIRECTION AND EXCEEDANCE PLAN

APPENDICES

- APPENDIX A PROPOSED DEVELOPMENT SKETCH DRAWINGS
- APPENDIX B BOREHOLE LOGS
- APPENDIX C FIELD DATA SHEETS
- APPENDIX D CHAINS OF CUSTODY AND SAMPLE RECIEPT FORMS
- APPENDIX E LABORATORY ANALYTICAL REPORTS
- APPENDIX F QA/QC ASSESSMENT
- APPENDIX G LABORATORY QA/QC AND DQOS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Mr Shen Xi Nan of Maville Park Pty Ltd engaged El Australia (El) to prepare an Additional Site Investigation Report (ADSI) for further site characterisation purposes within a property located at 12 -22 & 24 Rothschild Avenue, Rosebery NSW ('the site').

As shown in **Figure 1**, the site is currently occupied by various commercial entities with site uses including offices, retail and associated ground level car parking. The site is located approximately 4.7km south of the Sydney central business district and comprises of Lot 5, A & B DP 309149, Lot 408 DP 315228, Lot B DP 308922, Lot 1 DP 314957, Lot 1 & 2 DP 456612, Lot 410 & 456 DP 7534. The site is situated within the Local Government Area of Sydney and site covers a total area of approximately 0.84 hectares (8,403m²), as depicted in the site plan presented as **Figure 2**.

Site Auditor (Rebeka Hall, Zoic) was appointed, and interim advice (ref: 16059L01_IA1, 20 June 2016) identified numerous data gaps which required closure prior to the preparation of a remedial action plan (RAP).

This ADSI details the findings of the additional works to enable better understating of environmental conditions present at the site, whilst ensuring site characterisation meets the current requirements of NSW EPA endorsed guidelines and the NSW DEC (2006) Site Auditor Scheme.

This assessment was conducted in support of a Development Application (DA) to City of Sydney Council and for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

This assessment augments a previous Detailed Site Investigation Report (DSI) conducted by EI in September 2014 (Report No. E22282 AA_Rev1, 24th September 2014).

1.2 PROPOSED DEVELOPMENT

Based on the sketch designs of the proposed development plans provided by JPR Architects Pty Ltd, the redevelopment at the site will include demolition of the current UNSW building (central portion – 12-22 Rothschild Avenue) and the construction of a multi storey residential building, with two levels of basement car parking. The heritage building location on the southern portion of the site (24 Rothschild Avenue) will be retained with proposed alterations for residential use. Landscaping strips are proposed to be along the northern, western (Mentmore Avenue) and eastern (Rothschild Avenue) boundaries of the site. The sketch design drawings are attached as **Appendix A**.

1.3 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- DECCW (2009) Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008, (UPSS Guidelines);

- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition);
- EPA (1995) Sampling Design Guidelines;
- EPA (2014) Technical Note: Investigation of Service Station Sites;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater;
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act (1997);
- State Environment Protection Policy 55 (SEPP 55) *Remediation of Land*, and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 PROJECT OBJECTIVES

The main objective of this assessment is further characterise soil and groundwater at the site and address previously identified data gaps and contamination sources to assist in the preparation of a Remediation Action Plan. The primary objectives of this investigation were therefore to:

- Undertake an additional site history survey including a search of Street Cards held by City Of Sydney Council to obtain a better understanding of former site uses and the associated contaminants of concern;
- Characterise soil and groundwater quality on the southern portion of the site (24 Rothschild Avenue), previously limited in access during initial DSI works;
- Characterise groundwater conditions in the vicinity of the UST located on the north western portion of the site; and
- Characterise groundwater conditions entering the site from the neighbouring properties to the north.

A further objective, should site contamination be confirmed, will be to make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 SCOPE OF WORKS

In order to achieve the above objectives and in keeping the project cost-effective while generally complying with the OEH (2011) guidelines for consultants reporting on contaminated sites, the proposed/targeted scope of works were:

- Review of the previous DSI report;
- Additional site history investigation, including search of Street Cards held by City of Sydney Council and search of former site operations for the former owners / occupiers.
- Construction of test boreholes at 11 targeted locations distributed across the site. Six (6) of the boreholes are to be located within accessible areas within current buildings for soil sampling and characterisation purposes and five (5) boreholes are to be located in outdoor areas for groundwater monitoring well installation;

- Construction of five (5) groundwater monitoring wells to a maximum depth of 6m (or refusal). *It must be noted that two of the monitoring wells (BH201M and BH204M) could not be installed due to refusal on a buried slab*;
- Multiple level soil sampling of fill and natural soils at the seven (7) borehole locations located within current buildings and one (1) borehole located on the north western corner of the site;
- One round of groundwater sampling from the five (5) newly constructed groundwater monitoring bores and three (3) groundwater monitoring bores installed during DSI works. *It must be noted that BH201M and BH204M could not be installed due to refusal on a buried slab and former wells MW1 and MW2 were found* dry *during sampling*; and
- Laboratory analysis of selected soil samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation program; and

The final task of this assessment involved the preparation of this report to document the additional investigation works, methodologies used, test bore logs and monitoring well construction logs, with discussion of all data findings and laboratory analytical results in regards to potential risks to human health, the environment, and the aesthetic enjoyment of the land. Lastly, conclusions and recommendations for the appropriate management of any contaminated soils and/or groundwater will be made.

2. SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description	
Street Address	12 - 22 & 24 Rothschild Avenue, Rosebery NSW	
Location Description	Approx. 4.7 km south of Sydney CBD, a roughly rectangular block bound by Rothschild Avenue (east), Cressy Street (south), Mentmore Avenue (west) and industrial buildings followed by Epsom Road(north). Coordinates of the northwest corner of site: GDA94-MGA55 Easting: 888873.643, Northing: 6239687.397 (Source: http://maps.six.nsw.gov.au)	
Site Area	Approx. 0.84 hectares (8,403.3 m ² , Ref. Watson Buchan Pty Ltd)	
Site Owner / Client	Sussman & Co. Pty Ltd (owner) / Maville Park Pty Ltd (client)	
Lot and Deposited Plan (DP)	Lot 5, A & B DP 309149, Lot 408 DP 315228, Lot B DP 308922, Lot 1 DP 314957, Lot 1 & 2 DP 456612, Lot 410 & 456 DP 7534	
State Survey Marks	Two State Survey Marks (SSM) are situated in close proximity to the site: SS130511 on the Corner of Rothschild Avenue and Cressy Street, and SS130512 at the southwest corner of the site (Source: http://maps.six.nsw.gov.au).	
Local Government Authority	City of Sydney Council	
Parish	Alexandria	
County	Cumberland	
Current Zoning	B4 – Mixed Use (Sydney Local Environment Plan, 2012)	
Current Land Uses	Northern area – 12 – 22 Rothschild Avenue consisted of a two commercial buildings, occupied by University of NSW and a ground-level bitumen paved car park; and	
	Southern Area – 24 Rothschild Avenue consisted of a heritage building which was occupied by various commercial tenants (offices and fashion retail stores)	

Table 2-1 Site Identification, Location and Zoning

2.2 SURROUNDING LAND USE

The site is situated within an area of mixed land uses and current uses. Current uses of surrounding land are described in **Table 2-2**.

Direction Relative to Site	Land Use Description
North	Commercial industrial building (north west) and residential apartments building (north east).
South	Cressy Street followed by construction site.
East	Rothschild Avenue, followed by construction site.
West	Mentmore Avenue, followed by mechanical workshop (south west) and office buildings (north west)

Table 2-2 Surrounding Land Uses

Sensitive land uses, such as schools or childcare centres, were not identified within the close vicinity the site.

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description
Topography	Regional topography involves gently undulating plains and rolling undulating rises of broad, level to very gently inclined, swales and dunes. Local relief is <20 m (Chapman and Murphy, 1989).
	Locally, the site generally lies flat, with a slight slope to the southwest with a gradient of approximately 1 m vertical to 100 m horizontal, starting from RL 19.44 m AHD at the northeast corner of the site, to RL 18.13 m AHD at the southwest corner of the site. (Ref. Watson Buchan Pty Ltd, 2014).
Site Drainage	One strip gutter was noted at the eastern entrance to the car park at $12 - 22$ Rothschild Avenue and appeared to collect stormwater from nearby areas. Site drainage at the site is anticipated to occur via onsite pits and pipe drainage or sheet flow towards the southwest, discharging to the municipal stormwater system. Precipitation is also likely to infiltrate directly into soils in unsealed site areas.
Regional Geology	With reference to the 1:100 000 scale Geological Series Sheet 9130 (Sydney) the site overlies medium to fine-grained "marine" sand with podsols (Qhd).
Vadose Zone Soil Types	Sand, fine to medium-grain size.
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicated that the site overlies an Aeolian Landscape – Tuggerah (tg). Soils are identified as deep (>200cm) podsols on dunes and podsol/humus podsol intergrades on swales.

Table 2-3 Regional Setting Information

Attribute	Description
Acid Sulfate Soil Risk	With reference to the Botany Bay Acid Sulfate Soil Risk Map Edition Two (1:25,000 scale; Soil Conservation Service of NSW, 1997), the subject land lies within the map class description of <i>No Known Occurrence</i> . In such cases, acid sulfate soils (ASS) are not known or expected to occur and "land management activities are not likely to be affected by ASS materials".
	The City of Sydney Council Local Environmental Plan 2012- Acid Sulfate Soils Risk Class 1:5,000 scale Map indicates that the site lies within a Class 5 ASS area. Council consent is therefore required prior to commencing any works within 500m of Class 1, 2, 3 or 4 land, with a ground elevation of below 5m Australian Height Datum (AHD) and where the water table is likely to be lowered below 1m AHD on adjacent Class 1, 2, 3 or 4 land.
	Taking into account the above information, management of acid sulfate soils was considered not required.
Typical Soil Profile	Thin surficial sandy fill overlying weathered sandstone.
	Fill – Mainly comprised of sandy soils, varying from Sandy GRAVEL, SAND, and Gravelly Clayey SAND. Other anthropogenic materials, including GRAVEL, crushed SANDSTONE were also noted. Several other distinctive fill layers comprising Chalky CLAY, COAL and SANDY CLAY, were identified near the northwest corner of the site. (varying thickness 0 – 2.0 m);
	Botany Sands – SAND, fine to medium grained, grey/brown to yellow/orange, no odour.
Depth to Groundwater	Based on previous investigations at the site conducted by EI (2014), the average depth to groundwater is anticipated to be approximately 3.7 mbgl.
	Onsite groundwater conditions, including groundwater flow direction during this assessment, are discussed in Section 8.2 .
Aquifer Types / Estimated Thickness	The unconfined Botany Sands form the main aquifer for the region and is underlain by sandstone bedrock, which has been documented to range in depth from 1 m in upgradient (northern) parts of the basin becoming thicker, up to 75m (towards the south and southeast) near Botany Bay (Merrick, 1994). The aquifer thickness in the vicinity of the site is estimated to range from 14m to 17m, based on local drilling records.
Relevant Regulatory Instruments	The site is located within Zone 2 of the Botany Groundwater Management Area.
Nearest Surface Water Feature	Alexandra Canal, which is located approximately 1.3 km south west of the site. Alexandra Canal is understood to be tidally influenced and is considered to be a marine system for impact assessment purposes.
Groundwater Flow Direction	Based on the previous investigation at the site conducted by EI (2014) groundwater flow direction in the vicinity of the site is inferred to be south west towards Alexandra Canal.
Hydraulic Gradient	Previous groundwater assessments in the Botany Sands aquifer have identified hydraulic gradients ranging between 0.001 and 0.002.
Hydraulic Conductivity	Medium grain sized sand is estimated to have a hydraulic conductivity in the range of 5 to 20 m/day (Bouwer, 1978).
Aquifer Porosity	16% to 46% effective porosity estimated for medium grained sand (McWhorter and Sunada, 1977).
Groundwater Seepage Velocity	Based on literature-based estimates of hydraulic conductivity and aquifer porosity, the potential seepage velocity within the sandy material is estimated to range from 109 to 146 m/year (based on estimates of 0.3 to 0.4 m/day, Ref. URS, 2004).

Attribute	Description
Groundwater Salinity	Groundwater salinities within the Botany Sands aquifer are generally low with total dissolved solids (TDS) content typically below 1200 mg/L.

2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI within the DSI phase (EI, 2014) through the NSW Office of Water (Ref. <u>http://www.nratlas.nsw.gov.au</u>) and this revealed that there are 43 registered bores within 500m of the site. Authorised bore uses included industrial – recreational, domestic and monitoring, with standing water levels ranging between 1.68 and 7m BGL.

The NSW Government has been actively managing the extraction of groundwater in the Botany area and in August 2003 an embargo under Section 113A of the Water Act 1912 was announced in the northern part of the aquifer, because available water was depleted by plumes of contamination. This prohibition prevented any new applications to extract groundwater from being made. In August 2006, an order prohibiting the use of existing domestic bores was made for four zones within the northern Botany Sands Aquifer under Section 323 of the Water Management Act 2000. The ban on domestic use was made in the interest of public health and the zones were based on current and historical land use activity, as well as the potential for contamination. In June 2007, the remaining parts of the Botany Sands aquifer were embargoed under the Water Act 1912, to prevent any additional extraction. Hence, the current site lies within an area where the beneficial uses of groundwater have become highly restricted, therefore any groundwater bores from the NR Atlas search that are registered for domestic use are not considered to be currently used for these purposes. The existence of groundwater bores for authorised industrial and horticultural use in proximity of the site, however, indicates potential beneficial use of groundwater in the locality.

2.5 SITE WALKOVER INSPECTION

The site remained predominantly unchanged since the DSI works (EI, 2014). A summary of recorded observations during previous and current site works are summarised in **Table 2-4**.

Allotment	Buildings	USTs/ASTs	Observations
Overall site area	-	-	The site encompassed two separate allotments being 12 – 22 Rothschild Avenue at north, and 24 Rothschild Avenue at south. The site topography was generally flat.

Table 2-4 Summary of Buildings and Infrastructure

Allotment	Buildings	USTs/ASTs	Observations
12 – 22 Rothschild Avenue	The allotment was occupied by one three- storey concrete commercial block in the southern end, combined with a single storey concrete structure of approximately half length at its north near Mentmore Avenue. One electrical substation, enclosed by metal fence, was located near the western boundary of the allotment, adjacent to Mentmore Avenue. One cooling tower, enclosed by metal fence, was located north of the single storey structure. Remainder of the property was a car park and driveway. One sewage vent pipe, approximately 10 m high, was identified in the centre of the car park area.	One UST vent pipe was identified being attached to the metal fence of the cooling tower.	 Both buildings were in use as offices and storage facilities. Structures were in good condition. The substation and surrounding fence were in moderate condition with rusting observed. Cooling tower and surrounding fence were in poor to moderate condition with heavy rusting. Majority of the car parking area was comprised of asphalt pavement, except a few scattered planting boxes. Asphalt pavement was in fair condition, with occasional cracks, patches and staining. Pavement at northeast corner of the site appeared damaged. Multiple vehicles parked in the area observed. Planting boxes were vegetated by trees and shrubs with no signs of distress. Based on a GRP survey conducted by Hunter Smith Locating Services Pty Ltd the location of the UST and was confirmed to be consistent workcover search conducted during DSI works (EI, 2014). The location of the GPR survey is presented in Figure 2.
24 Rothschild Avenue	One double-gable roofed, two storey brick building. Associated unsealed lawn areas and concrete paved walkway fronting both Rothschild Avenue and Mentmore Avenue.	No UST identified	Building was in use as office and warehouse and in good condition. Front lawns were planted with shrubs and small trees. Sign of vegetation distress was not observed.

3. PREVIOUS INVESTIGATIONS

3.1 AVAILABLE DOCUMENTS

A previous environmental investigation in the form of a Detailed Site Investigation Report was prepared by El in 2014. El documented their findings in a report titled "*Detailed Site Investigation Report, 12 - 22 & 24 Rothschild Avenue, Rosebery NSW* (Ref. E22282 AA_Rev1, 24 September 2014). A summary of El works and key findings is outlined in **Table 3-1**.

Assessment Details	Project Tasks and Findings
Detailed Site Invest	igation Report (El, 2014)
Work Objectives	 Evaluate the potential of contamination presence on site on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources; To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants. Identify and evaluate potential risks that identified contamination may pose to human health and the environment; and Provide data to assist in the selection and design of appropriate corrective action options for management of contaminated soils or groundwater, if necessary.
Scope of Works	 A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area; Search of historical aerial photographs archived at NSW Land and Property Information in order to review previous site use and the historical sequence of land development in the neighbouring area; A land titles search, also conducted through NSW Land and Property Information for information relating to site ownership; Site history survey involving a detailed search of City of Sydney Council records for information relating to operational site history and/or relevant environmental incidents; A search through the NSW EPA / OEH Land Information records to confirm that there are no statutory notices current on the site under the Unhealthy Building Land Act (1990) or the Contaminated Land Management Act (1997); A search of the Stored Chemical Information Database (SCID) and microfiche records held by WorkCover NSW relating to possible underground tank approvals and locations; and A review of existing underground services on site. A detailed site walkover inspection; Construction of boreholes at nineteen locations (BH1 – BH19) distributed in a triangular grid pattern across accessible areas of the site; Multiple level soil sampling down to natural soils; Three boreholes converted to groundwater monitoring wells for groundwater sampling purposes; One groundwater monitoring event involving groundwater sampling from the three monitoring wells; and
	 Data analysis and Reporting

 Table 3-1
 Summary of Previous Investigation Works and Findings

Assessment Details	Project Tasks and Findings
Findings	 The sub-surface layers comprised of fill materials of mainly sandy materials, underlain by natural sand;
	 Groundwater was encountered generally at 3.5 meters below ground level, flowing within the Botany Sands Aquifer;
	 A lead hotspot was identified at borehole BH1, with reported concentrations exceeding adopted human health based SILs; The exceedance is not considered to pose a risk to human health if left undisturbed;
	 Sample BH14-3, collected at approximately 1.5 m – 1.7m bgl, reported exceedance of F1 fraction TRH over HSL for residential developments. The exceedance is considered low risk under the current land uses.
	 Sample BH11-1 was found to exceed the ESL for F3 fraction TRH for residential developments. Under the current land use the exceedance is not considered significant.
	• Samples BH11-1 and BH18-1 were found to exceed the human health based SILs for carcinogenic PAH's (as Benzo (a) pyrene TEQ), except under the current land use. Exceedances of Benzo (a) pyrene over the ecological screening levels were also reported at BH11-1, BH16-1 and BH18-1.Vertical delineation was achieved at BH11 at 0.7 m bgl. Future development will likely comprise a basement car parking facility which provides an opportunity for impacted soils to be removed and disposed in accordance with NSW EPA waste classification guidelines.
	 Asbestos fibres were detected in the fill layer at one location. The investigation indicated that asbestos contamination is likely to be localised within the area of BH1.
	• PCBs in exceedance of health based SILs were detected in BH14 and BH18. BH18 was identified as a hotspot as significant exceedance was found. Delineation was achieved at approximately 0.7 m – 0.8 m bgl at both locations. The exceedances are not considered to pose an immediate threat to human health under the current setting and will be removed as part of future development.
Conclusions	Overall, contamination onsite was identified during the DSI. The contamination was detected within the surface fill and not considered as an immediate threat to human health and the ecosystems, and the site is generally suitable for ongoing commercial and industrial land use. Future development for residential use will most likely comprise a basement car parking facility which would require off-site disposal of surface fill soils. This is quite common and consistent with surrounding properties in the area. Remediationwas required to make the site suitable for residential use.
Recommendations	 Should redevelopment of the site occur, a Remedial Action Plan (RAP) shall be prepared to detail requirements to locate and remove the UST possibly present near the western boundary of the site., and to remediate and or manage heavy metal, TRH, PAH, PCB, and asbestos impacts present in shallow surface fill soils;
	• Where any plan of future redevelopment is confirmed; the site shall be assessed against the SILs applicable to the proposed land use. Subsequent actions, including further investigation, delineation and preparation of RAP, shall be conducted based on the proposed land uses and the assessment results, to make the site suitable for the proposed land use.

4. SITE HISTORY

4.1 SUMMARY OF EI HISTORY REVIEW (DSI, 2014)

A comprehensive site history review was undertaken during DSI works (EI, 2014). Information included, historical aerial photographs, land title records, NSW WorkCover records and Council records. A summary of these finding are presented in **Table 4-1**.

Source	Summary
Aerial Photos / Land Title Records	 <u>12-22 Rothschild Avenue</u> Aerial photographs suggests the existing building on the southern portion (UNSW Building), had been present on the site since the 1930's. The majority of the other areas of the property were predominantly vacant and then converted into a car park in the 1980s. The north eastern portion was occupied by a low rise structure and three sheds in the 1930's and then converted as part of the car park in 1982.
	 Land title information suggests the majority of the property was privately owned up until the 1950s when Bates (Australasia) Limited bought the property. Since the 1950's the property had been owned by Australian Electrical Industries Pty Ltd, IBM Australia Limited and Sussman and Company Pty Limited. The north eastern portion had been owned solely by commercial entities since the 1914 including companies such as Australian Bag Company Limited, Australian Electrical Industries Pty Ltd, IBM Australia Limited and Sussman and Company Pty Limited.
	 Overall, the land parcel known as 12 – 22 Rothschild Avenue, Rosebery had been used for commercial/industrial land uses from the 1930s. In late 1960s the land was acquired by IBM Australia and solely used for commercial purposes since then.
	24 Rothschild Avenue
	 Aerial photographs suggested that the existing site structure had been present on the site since at least the 1930's.
	 Land title information suggested that the property had predominantly been commercially owned since the 1920's. Such company's include Australian Bag Company Limited, Australian Electrical Industries Pty Ltd, IBM Australia Limited and Sussman and Company Pty Limited.
	• Overall, the land parcel known as 24 Rothschild Avenue, Rosebery appeared to have been primarily used for commercial and/or manufacturing uses from 1930– 1980, from when the land was likely being used for commercial activities only.
	Surrounding Lands
	 Historical land uses on surrounding lands appeared to be primarily commercial and industrial from the 1930s.
	• A review of the 1951 historical aerial photograph identified an operating tram at the corner of Epsom Road and Rothschild Avenue. Further investigation revealed that a Tramway Line was previously constructed along Rothschild Avenue and was in operation until the 1950s As historically asbestos was used in some mechanical parts of tram carriages (e.g. brakes), the presence of asbestos onsite as a result of mobilised residual asbestos fibres from the former tramway line is considered possible.
Council Search	Historical Council records indicated that from the1950s to 1960s, 12 – 22 Rothschild Avenue, had been used for light industrial and manufacturing activities, which involved multiwall bags, plywood, electrical equipment and water heater manufacturing. 24 Rothschild Avenue had been used for bag manufacturing purposes from early 1950s.
NSW WorkCover	Revealed the presence of one underground tank (UST) at 12-22 Rothschild Avenue. The tank was installed in 1975, was 25,000 litres in size, stored mineral spirit (presumably petrol) and was abandoned with water and rust inhibitor in 1990.

 Table 4-1
 Site History Summary

Source	Summary
Hazardous Chemicals and Regulatory	An on-line search of the Contaminated Land – Record of EPA Notices database that is maintained by the NSW OEH confirmed that the NSW OEH has no regulatory involvement under Section 58 of the Contaminated Land Management Act 1997 in relation to the land parcel identified as 12 – 22 & 24 Rothschild Avenue, Rosebery, or surrounding areas in its proximity.
Compliance	A search through the List of NSW Contaminated Site notified to EPA was conducted. The search revealed that a property, located approximately 30 m north of the site and known as 2 Mentmore Avenue, was reported to EPA as a contaminated site. Information available in the list suggested that the site was contaminated by Other Industry activities, and was currently under EPA site management class F and G. According to EPA, site management class F suggests the contamination of the site is managed by a planning approval process. The consent authority is either the local council or a government agency, such as the Department of Planning. Site management class G suggests based on the information made available to the EPA to date, the contamination of the site is considered by the EPA to be not significant enough to warrant regulatory intervention under the Contaminated Land Management Act 1997.

4.2 PLANNING STREET CARDS

Additionally a search of the Planning Street Cards for Rothschild Avenue held by the City Of Sydney was undertaken on 25th August 2016 to confirm former site uses identified during the DSI (2014). The majority of the planning street cards content was of poor visual quality and could not be interpreted. From the information that could be interpreted, the key findings are summarised in **Table 4-2**.

Reference no.	Year	Key findings
12-24 Rothschild	d Avenue	
982/52	1952	Application for continual use of site by a machinery merchants company.
925/52	1952	Application to erect structure for use of timber storage.
978/52	1952	Application to erect structure for use of storage of timber
4841/57	1957	Application for registration of premises to factory of auto wiring and cables.
15/57	1957	DA for alterations and to use to manufacture electrical equipment.
416/58	1958	DA for use of premises for plywood manufacturing.
311/3/86	1963	Labour and Industry notification for assemblage of sheet metal.
1069/63	1963	DA for the premises for use of site to manufacturing electric water heaters.
72/68	1968	DA for alterations and to use premises as depots. Type of depot was unclear on the street planning card
138/75	1975	Application to install a 5000 gallon petrol tank. Application made by I.B.M. Aust. Limited.
599 1/76	1976	Provision for landscaping for car parking area.
354/79	1979	Application for substation enclosure.
4582/1547	1982	Installation of new roof sheeting.

Table 4-2 Planning Street Cards Review

Overall the planning street cards for 12-22 Rothschild Avenue indicated that the premises had been used for a variety of commercial and industrial purposes including machinery merchants, timber storage, auto wiring and cables manufacturing, plywood manufacturing, assemblage of sheet metal, manufacturing electrical water heaters and use as a depot. Other key findings include; a 5000 gallon petrol tank was installed in the mid 1970's, an electrical substation had been present since the late 70's and new roof sheeting was installed in 1982.

There were very few planning street cards for 24 Rothschild Avenue, however review indicated alternations and additions applications to existing building within the period of 1963 to 1973. Specific details of these alternations and additions could not be interpreted.

Overall, the findings of the street planning card search are generally consistent with the previous site history search undertaken during DSI works (2014) and discussed in **Section 4.1**.

5. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

5.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES

On the basis of site history and search findings (described in **Section 4**) El consider potential chemical hazards and onsite contamination sources to be as follows:

- Imported fill soils of unknown origin distributed across the site;
- Impacts from previous light industrial manufacturing activities at the site;
- Painted surfaces in relation to the structures (buildings) that are currently present on the site;
- Potential Hazardous materials, including potential asbestos-containing materials (ACM) from former building products;
- Potential pesticide use underneath building structures
- Electrical substation present at the site;
- Off-site sources of contamination, including EPA notified site located 30m north of the site and asbestos used in former tram line along;
- Previously identified lead, PCB, TRH, PAH and Asbestos impacted fill; and
- The abandoned underground petroleum storage systems (UPSS) present on the site.

5.2 CHEMICALS OF CONCERN

Based on the findings of the site contamination appraisal the chemicals of concern (COC) at the site are considered to be:

- Soil heavy metals (HMs), TPH, PAH, the monocyclic aromatic hydrocarbon compounds benzene, toluene, ethylbenzene and xylenes (BTEX), organochlorine and organophosphate pesticides (OCP/ OPP), polychlorinated biphenyls (PCB), volatile organic compounds (VOC), Phenols and asbestos.
- Groundwater HMs, TPH, BTEX, PAH, volatile organic compounds (VOC), including chlorinated VOC (VOCC) such as trichloroethylene (TCE) and phenols.

5.3 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Figure 5-1**.

Figure 5-1 Conceptual Site Model

5.4 DATA GAPS

The following data gaps were aimed to be closed during works this investigation:

- Soil characterisation within internal areas of the site, where access was previously limited, including at 24 Rothschild Avenue (heritage building) and at 12-22 Rothschild Avenue (UNSW Building);
- Characterisation of up-gradient groundwater on the northern portion of the site; and
- Characterisation of groundwater in the vicinity of the abandoned UST at 24 Rothschild Avenue.

6. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

6.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the USEPA (2006) *Data Quality Assessment* and the DEC (2006) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the El assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 6-1**.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps (NSW DEC, 2006)	US EPA (2006) (modified)	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model	Give a concise description of the problem Develop a conceptual model of the environmental hazard to be investigated. Identify resources available.	The site is to be developed for mixed land uses including residential apartments. 24 Rothschild Avenue building is heritage listed and will be retained as part of the proposed development. The previous DSI (EI, 2014) was unable to adequately characterise soil within internal areas (including 24 Rothschild Avenue), groundwater in the vicinity of the abandoned UST and groundwater on the southern portion of the site. The additional site investigation was required to fill data gaps	
		identified above to ensure the site can be made suitable for the proposed development and assist in preparation of an RAP.	
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them	Identify principal study question(s). Consider alternative outcomes or actions that may result from answering the question(s). For decision problems, develop decision statement(s), organise multiple decisions. For estimation problems, state what needs to be estimated and key assumptions.	Historical information and previous investigation results indicated that site soils had been impacted from previous activities, including site filling, USTs, and industrial use. Further site characterisation was required within areas at which access was previously limited during the initial DSI works. Furthermore an additional site history review was required to further expand understanding of former site uses. The ADSI was aimed to augment characterisation of the site to assist in the developing remedial requirements for the site to be made suitable for the proposed mixed commercial and residential land use.	

DQO Steps (NSW DEC, 2006)	US EPA (2006) (modified)	Details	Comments (changes during investigation)
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	Identify types and sources of information needed to resolve decisions or produce estimates. Identify the basis of information that will guide or support choices to be made in later steps of the DQO Process. Select appropriate sampling and analysis methods for generating the information.	The main inputs to the additional DSI include: Findings of the initial DSI undertaken by EI (2014); Desktop information; Site observations; Laboratory results from analysis of soil and groundwater samples. National and NSW EPA guidelines under the NSW Contaminated Land Management Act 1997. Laboratory analyses were completed in accordance with NEPM (2013) Schedule B3. Groundwater samples were collected using low flow sampling techniques to assist in the collection of volatile contaminants that may be present.	
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	Define the target land-use and receptors of interest and its relevant spatial boundaries. Define what constitutes a sampling unit. Specify temporal boundaries and other practical constraints associated with sample/data collection. Specify the smallest unit on which decisions or estimates will be made.	Lateral – As shown in Figure 2 , the site comprised of 10 separate lots and is bound by commercial and residential apartments to the north, Cressy street to the south, Rothschild Avenue to the east and Mentmore Avenue to the west. Vertical – Investigation depth to be extended down through natural soils and to the underlying groundwater aquifer; and. Temporal – One round of groundwater sampling was undertaken Regulatory – The site is within Zone 2 of the Botany Bay Groundwater Zone.	
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions	Specify appropriate land-use parameters for making decisions or estimates. For decision problems, choose a workable Action Level and generate an "If then else" decision rule which involves it. For estimation problems, specify the methodology and the estimation procedure.	 The decision rules for the investigation were: If the concentrations of contaminants in the soils and groundwater data exceed the adopted site assessment criteria; then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 6-2. 	

DQO Steps (NSW DEC, 2006)	US EPA (2006) (modified)	Details	Comments (changes during investigation)
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	For decision problems, specify the decision rule as a statistical hypothesis test, examine consequences of making incorrect decisions from the test, and place acceptable limits on the likelihood of making decision errors. For estimation problems, specify acceptable limits on estimation uncertainty.	 Specific limits for this project were in accordance with the guidance made by the NSW EPA, appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits: A decision can be made based on a probability that 95% Upper Confidence Limits (UCL) of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect. A decision can be made based on the probability that a contamination hotspot of a certain circular diameter will be detected with 95% confidence using a selected density of systematic data points. The decision error will be limited to a probability of 5% that a contamination hotspot may not be detected. If contaminant concentrations in groundwater exceed the adopted criteria, further investigation will be considered prudent. If no contamination is detected in groundwater, further action will not be warranted. 	

Page | **20**

DQO Steps (NSW DEC, 2006)	US EPA (2006) (modified)	Details	Comments (changes during investigation)
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	Compile all data and outputs generated in Steps 1 to 6.	Instructions will be issued to guide field personnel in the required fieldwork activities	Due to a buried deeper slab in the vicinity of the
	Use this information to identify alternative sampling designs that fit your intended use	Borehole locations were targeted to locations previously inaccessible during initial DSI works to evaluate the environmental conditions on site, to assist in preparation of RAP.	abandoned UST at 12-22 Rothschild Avenue and up- gradient of 24 Rothschild Avenue groundwater monitoring wells could not be installed in these areas.
	Select and document a design that will yield data to best achieve your data quality.	Five groundwater monitoring wells were proposed to be installed at the site; including locations along the northern boundary, down- gradient of the abandoned UST, central portion of 12-22 Rothschild Avenue, up-gradient of 24 Rothschild avenue and down-gradient of 24 Rothschild Avenue.	
		An upper soil profile sample (soil extracted immediately beneath the concrete hardstand/pavement, or at surface level if a pavement is not present) will be collected at each borehole location and tested for chemicals of concern, to assess the conditions of fill layer, and potential impacts from activities above ground.	
		Further sampling would also be carried out at deeper soil layers. These samples would be selected for testing based on field observations, while giving consideration to characterise the subsurface soil stratigraphy.	

6.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 8**.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR) Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate Laboratory – Laboratory duplicate and matrix spike	< 30 % relative percentage difference (RPD [%])
	duplicate	Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared) Laboratory – Method blank	< laboratory limit of reporting (LOR)
		Prescribed by the laboratories
Completeness	Completion (%)	-

Table 6-2 Data Quality Indicators (Summary)

ASSESSMENT METHODOLOGY

7.1 SAMPLING RATIONALE

7.

With reference to the preliminary CSM described in **Section 5**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from five (5) test bore locations located at accessible areas at 24 Rothschild Avenue to further characterise in-situ soils, as illustrated in **Figure 2**.
- Sampling fill and natural soils at two (2) test bore locations within the UNSW building at 12-22 Rothschild Avenue to further characterise in-situ soils, as illustrated in **Figure 2**.
- Installation of five (5) groundwater monitoring wells at targeted locations throughout the site including along the up-gradient northern boundary, in the vicinity of the abandoned UST, central portion of the car park at 12-22 Rothschild Ave, up-gradient and down-gradient locations at 24 Rothschild Ave, as illustrated in **Figure 2**;
- Sampling groundwater during a single groundwater monitoring event (GME) at the newly monitoring wells installed and the three (3) monitoring wells installed during DSI works, as illustrated in **Figure 2**;
- Laboratory analysis of representative soil and groundwater samples for the identified chemicals of concern.

7.2 INVESTIGATION CONSTRAINTS

The number of test bores drilled and monitoring wells installed during the investigation phase did not achieve the planned investigation scope as described in **Section 7.1** due to a number of physical obstructions, which comprised:

- Due to limited access to internal areas of the buildings in the vicinity of bore locations BH208 and BH209 (refer for **Figure 2**) these bores were drilled using the manual auger method, however the target depth was reached at these locations;
- Buried impenetrable materials (buried deep slabs) in the vicinity of bore locations BH201M and BH204M causing auger refusal and therefore these proposed monitoring bores could not be installed;
- Buried impenetrable materials (buried deep slabs) in the vicinity of bore location BH211 caused auger refusal and therefore targeted natural soils were not sampled; and
- Previously installed monitoring wells (MW1 and MW2) were found dry, due to siltation, and therefore groundwater could not sampled at these monitoring wells.

7.3 ASSESSMENT CRITERIA

The assessment criteria proposed for this project are outlined in **Table 7-1**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013	Soil Health-based Investigation Levels (HILs)
	Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	Soil samples are to be assessed against the NEPM 2013 HIL-B thresholds for residential sites with minimal access to soils as these borehole locations are located within proposed basement boundary of beneath a concrete slab.
		Soil samples collected from BH202M were also assessed NEPM 2013 HIL-C thresholds for public open spaces. BH202M was located within a potential proposed landscaping area.
		Ecological Investigation Levels (EILs)
		Soil samples collected at BH202M would also be assessed against the NEPM 2013 EILs for Urban residential / public open spaces for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene, which have been derived for protection of terrestrial ecosystems as BH202M is located within a proposed landscaping area. Table 7-2 provides a summary of adopted Added Contaminant Levels (ACL) and Ambient Background Concentrations for derivations of copper, chromium (III), nickel, lead and zinc EILs. Generic EILs were adopted for ecological assessment in relations to arsenic, DDT and naphthalene. BH202M was located within a potential proposed landscaping area.
		EILs only apply to the upper 2m of soil (the root zone).
		Soil Health-based Screening Levels (HSLs)
		The NEPM 2013 Soil HSL-A&B thresholds for low-high density residential sites for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene.
		Soils asbestos results to be assessed against the NEPM 2013 Soil HSL thresholds for "all forms of asbestos".
		Ecological Screening Levels (ESLs)
		Soil samples collected at BH202M would also be assessed against the NEPM 2013 ESLs for selected petroleum hydrocarbons & TRH fractions for protection of terrestrial ecosystems.
		ESLs only apply to the upper 2m of soil (the root zone)
		Management Limits for Petroleum Hydrocarbons
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples would also assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.
Groundwater	NEPM, 2013 GILs	Groundwater Investigation Levels (GILs) for Marine Water
	for Marine Waters	NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The marine criteria were considered relevant as the closest, potential surface water receptor was Alexandra Canal, located 1.3km south west of the site and understood to be tidally influenced.

Table 7-1 Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale
	NEPM, 2013 Groundwater HSLs for Vapour Intrusion	Health-based Screening Levels (HSLs) The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The HSL A and HSL B thresholds for low and medium- density residential sites were applied for groundwater.
	NEPM, 2013 GILs for Drinking purposes	Drinking Water GILs The NEPM (2013) GILs for drinking water quality were applied for specific parameters, for which freshwater/marine GILs were not provided. These were based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011).

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 9**.

Metal	Assumed Values ¹	EIL (mg/kg) ²
Arsenic	Generic EIL	100
Chromium (III)	ABC - 15 mg/kg (assumes an old NSW high traffic suburb) ACL - 190 mg/kg (assumes clay content <1 % - most conservative)	205
Copper	ABC - 30 mg/kg (assumes an old NSW high traffic suburb) ACL - 60 mg/kg (assumes pH 4.5 – most conservative)	90
DDT	Generic EIL	180
Lead	ABC - 160 mg/kg (assumes an old NSW high traffic suburb) ACL – 1,100 mg/kg (generic)	1,260
Naphthalene	Generic EIL	170
Nickel	ABC - 5 mg/kg (assumes an old NSW high traffic suburb) ACL - 30 mg/kg (assumes CEC 5 – most conservative)	35
Zinc	ABC - 120 mg/kg (assumes an old NSW high traffic suburb) ACL - 70 mg/kg (assumes pH 4 & CEC 5 – most conservative)	190

Table 7-2	Generic and Derived Ecological Investigation Levels
-----------	---

7.4 SOIL INVESTIGATION

The soil investigation works conducted at the site are described in **Table 7-3**. Test bore locations are illustrated in **Figure 2**.

Activity/Item	Details
Fieldwork	The soil investigation was conducted on 6 August 2016.
Drilling Method & Investigation Depth	Test bores BH202M, BH206, BH207, BH210 and BH211 were drilled using a tight access track mounted drilling rig using 100mm diameter augers.
	Test bores BH208 and BH209 were drilled using the manual auger method due to access restrictions.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix B .
Field Observations	A summary of field observations is provided, as follows:
(including visual and	 fibre cement sheet fragments were not observed in any drilling cuttings; and
potential contamination)	 no signs of ash or charcoal materials were detected in any of the drilled boreholes.
	 No visual signs of contamination were observed and no suspicious odours were detected during any stage of the field investigation programme.
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars. Blind field duplicates was separated from the primary samples and placed into glass jars. A small amount of duplicate was collected from each soil samples and placed
	 A small amount of duplicate was separated from all fill samples and placed into
	a zip-lock bag for asbestos analysis.
Decontamination Procedures	<i>Drilling Equipment</i> - The drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials. <i>Sampling Equipment</i> – Nitrile gloves were dedicated to each sample, however were rinsed with laboratory prepared deionised water between samples. One rinsate sample was collected (QR1) during soil sampling.
Sample Preservation	Samples were stored in a chilled (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra- laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 8 .
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo-ionisation Detector (PID) fitted with a 10.9 eV lamp.

Table 7-3 Summary of Soil Investigation Methodology

7.5 GROUNDWATER INVESTIGATION

The groundwater investigation works conducted at the site are described in **Table 7-4**. Monitoring well locations are illustrated in **Figure 2**.

Activity/Item	Details
Fieldwork	Groundwater monitoring wells were installed and developed on 6 August 2016. Water level gauging, well purging, field testing and groundwater sampling was conducted on 17 August 2016.
Well Construction	Test bores were converted to groundwater monitoring wells as follows:
	 one, approx. 6 m deep, onsite, up-gradient and along the northern boundary at12-22 Rothschild Ave, identified as BH205M;
	 one, approx. 6 m deep, onsite, central portion of the 12-22 Rothschild Ave, identified as BH203M; and
	 one, approx. 6 m deep, onsite, down-gradient of 24 Rothschild Ave, identified as BH202M;
	It must be noted that proposed groundwater monitoring well locations BH201M (up- gradient location of 24 Rothschild Ave) and BH204M (in vicinity of abandoned UST at 12-22 Rothschild Ave) encountered refusal on a deeper concrete slab at approximately 1m BGL and therefore could not be installed. BH201M and BH204M were drilled using a ute-mounted, mechanical, 150 mm diameter, solid-flight auger rig.
	Monitoring bores BH203M and BH205M were drilled by using a ute-mounted, mechanical, 150 mm diameter, solid-flight auger rig, whilst BH202M was drilled using a tight access, 100 mm diameter, solid-flight auger rig .
	Well construction details are tabulated in Table 9-2 and documented in the bore logs presented in Appendix H . Wells were generally installed to screen the sand aquifer within the interval of approx. 3.0 to 6.0 m BGL. Locations are provided on Figure 2 and Figure 3 .
Well Construction	Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following:
(continuou)	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present;
	 base and top of each well was sealed with a uPVC cap;
	 annular, graded sand filter was used to approximately 300mm above top of screen interval;
	 granular bentonite was applied above annular filter to seal the screened interval;
	 drill cuttings were used to backfill the bore annulus to just below ground level; and
	 surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level.
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment using a 12V, HDPE submersible bore pump (Proactive Environmental, model Super Twister). Pumping was continued until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes).

 Table 7-4
 Summary of Groundwater Investigation Methodology

Activity/Item	Details
Well Survey (Elevation and location)	Well elevations at ground level were extrapolated from the spot elevations marked on the survey plan provided by the client (Figure 3). Well elevations at ground level were extrapolated in metres relative to Australian Height Datum (m AHD).
Well Gauging & Groundwater Flow Direction	The newly installed monitoring wells (BH202M, BH203M and BH205M) as well as monitoring wells installed during the initial DSI (MW1, MW2 and MW3) were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 17 August, 2015. The wells MW1 and MW2 were found to be dry and all measured SWLs are shown in Table 9-2 . A transparent HDPE bailer was used to visually assess for the presence PSH prior to the commencement of well purging at as all wells with PSH not detected. Based on the reduced water levels (RWLs, i.e. SWLs corrected to AHD) calculated at each monitoring well (Table 9-3) groundwater level contours were interpreted for the site as shown in Figure 3 . The direction of groundwater flow in the shallow aquifer was inferred to be in a southwest direction. This is consistent with the anticipated groundwater flow direction, as inferred on the basis of bedrock surface contours documented by Griffin (1963) and considering the proximity of the site to Alexandra Canal (located 1.3 km to the southwest).
Well Purging & Field Testing	No volatile organic odours were detected during any stage of well purging. Measurement of water quality parameters was conducted repeatedly during well purging and were recorded onto field data sheets (Appendix H) once water quality parameters stabilised. Groundwater was initially observed to be slightly clear / yellow / brown in colour with suspended sediments (SS). Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC) and pH of the purged water were also recorded during well purging. Purged water volumes removed from each well and field test results are summarised in Table 9-3 .
Groundwater sampling	All groundwater monitoring wells were purged and sampled using low-flow/minimal drawdown sampling method with a MicroPurge kit (MP15) and a portable MicroPurge pump following well gauging.
	The MicroPurge system incorporates a low density poly-ethylene (LDPE) pump bladder, and a Teflon-lined LDPE sample delivery tube. The system used for this investigation employed pressurised carbon dioxide gas to regulate groundwater flow. Pump pressure and pumping cycles were adjusted accordingly to regulate extraction flow rate, and to avoid causing excessive drawdown of water level during the sampling process.
	Field measurement of water quality parameters was conducted continuously on purged groundwater with a water quality meter (Hanna Multi Parameter 9829) positioned within an open flow-through cell. Groundwater parameters tested in the field were Dissolved Oxygen (DO), Electrical Conductivity (EC), Redox, Temperature and pH. The measured parameters were recorded onto a field data sheet (Appendix C), along with the purged water volume at the time of measurement.
	Groundwater sampling was performed when three consecutive readings of groundwater parameter indicated stabilisation; as per the specified ranges detailed below:
	Electrical Conductivity: ± 3% of the read value;
	• Redox: ± 20 mV;
	• DO: ± 20% of the read value; and
	• pH: ± 0.2 pH unit.
	Total water volume purged and stabilised groundwater parameters at each groundwater monitoring well are summarised in in Table 9-3 .

Activity/Item	Details
Decontamination Procedure	Decontamination was not required on the pump bladder and delivery tube of the MicroPurge System as they were dedicated to each groundwater monitoring well. The remainder of the MicroPurge system, the interface probe and the water quality meter were decontaminated with a solution of potable water and Decon 90. This was followed by rinsing with potable water, then a final rinse with de-ionised rinsate water supplied by the primary laboratory between each sampling location.
Sample Preservation	 Sample containers were supplied by the laboratory with the following preservatives: one, 1 litre amber glass, acid-washed and solvent-rinsed bottle; two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflonsealed; and one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). Samples for metals analysis were field-filtered using 0.45 µm pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra- laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix D .

8. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if these data meet the objectives of the project (Ref. USEPA 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- suitable records of fieldwork observations including borehole logs;
- relevant and appropriate sampling plan (density, type, and location);
- use of approved and appropriate sampling methods;
- preservation and storage of samples upon collection and during transport to the laboratory;
- complete field and analytical laboratory sample COC procedures and documentation;
- sample holding times within acceptable limits;
- use of appropriate analytical procedures and NATA-accredited laboratories; and
- required LOR (to allow for comparison with adopted IL);
- frequency of conducting quality control measurements;
- laboratory blanks;
- field duplicates;
- laboratory duplicates;
- matrix spike/matrix spike duplicates (MS/MSDs);
- surrogates (or System Monitoring Compounds);
- analytical results for replicated samples, including field and laboratory duplicates and interlaboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigations at the site are discussed in detail in **Appendix E**. QA/QC policies and DQOs are presented in **Appendix F**.

On the basis of the analytical data validation procedure employed the overall quality of the soil and groundwater analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

Page | 31

9. RESULTS

9.1 SOIL INVESTIGATION RESULTS

9.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes, installation of monitoring wells may be described as a layer of anthropogenic filling overlying Botany Sands. The geological information obtained during the investigation is summarised in **Table 9-1** and borehole logs from these works are presented in **Appendix B**.

Material	Depth (mBGL) [⁺]	General Description
Fill	0.0 to max 1.7+	Concrete or bitumen hardstand overlying:
		SAND, fine to medium grained, brown, trace fine grained gravel, moist, no odour.
		Gravelly Clayey SAND, fine to medium grained, orange / grey, gravel is coarse grained, moist, no odour.
Aeolian	0.5 to max 6.0+	SAND, fine to medium grained, brown / grey, no odour.

Table 9-1 Generalised Subsurface Profile (m bgl)

Notes: + Termination depth of borehole

9.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.0 m to 1.1 m bgl. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- No visual or olfactory evidence of hydrocarbon impacts were noted at any of the borehole locations investigated during this assessment;
- No fibrous cement sheeting, ash, charcoal or slag was observed in any of the examined fill soils;
- No asbestos containing material was observed in any examined fill soils; and
- Low VOC concentrations ranging from 0 to 1.1 parts per million (ppm) were detected in soil headspace samples, which were field-screened using a portable PID fitted with a 10.9 eV lamp. The PID results are shown in the borehole logs (**Appendix B**).

9.2 GROUNDWATER INVESTIGATION RESULTS

9.2.1 Monitoring Well Construction

A total of three groundwater monitoring wells were installed across during ADSI drilling works (BH202M, BH203M and BH205M). These complimented three groundwater monitoring wells (MW1, MW2 and MW3) installed during initial DSI drilling works (EI, 2014). All monitoring locations were

screened in =Botany Sands. Well construction details for the installed groundwater monitoring wells are summarised in **Table 9-2**.

Well ID	Bore Depth (m bgl)	RL (GL)	RL (TOC)	Screen Interval (m bgl)	Lithology Screened
MW1	4.799	18.750	18.570	1.799-4.799	Fill / Sand
MW2	5.005	19.405	19.305	2.005-5.005	Sand
MW3	5.005	18.380	18.280	1.904-4.904	Sand
BH202M	5.800	18.130	18.029	2.800-5.800	Sand
BH203M	6.000	18.870	18.770	3.000-6.000	Sand
BH205M	6.000	19.280	19.200	3.000-6.000	Sand

Table 9-2 Monitoring Well Construction Details

Notes:

m bgl = metres below ground level.

RL = Reduced Level – Surveyed elevation in metres relative to Australian Height Datum (m AHD).

GL = Ground Level

TOC = top of well casing

RL (TOC) = Surveyed elevation at TOC in m AHD.

9.2.2 Field Observations and Water Test Results

A single GME was conducted on all wells in 17 August, 2016. On this date, standing water levels (SWLs) were measured within each well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in **Table 9-3** and copies of the completed Field Data Sheets are included in **Appendix C**.

Well ID	SWL (m BTOC)	RL (TOC)	WL⁺ (m AHD)	Purge Volume (L)	DO (mg/L)	Field pH	Field EC (μS/cm)	Tem p (°C)	Redox (mV)	Odours / Turbidity
MW1 *	Well	Dry	-	-	-	-	-	-	-	-
MW2 *	Well	-Dry	-	-	-	-	-	-	-	-
MW3	4.220	18.280	14.060	1.5	1.71	6.54	513	22.9	283.2	None / moderate
BH202M	4.290	18.029	13.739	1.5	2.01	6.37	417	23.29	288.1	None / moderate
BH203M	4.690	18.770	14.080	1.8	1.86	6.71	526	24.09	283.9	None / moderate
BH205M	4.950	19.200	14.250	2.0	1.59	5.72	1383	23.22	304.9	None / moderate

Table 9-3	Groundwater Field Data	GME date	17 Aug	gust 2016)
-----------	------------------------	----------	--------	------------

Notes:

GME - Groundwater monitoring event.

SWL – Standing Water Levels as measured from TOC (top of well casing) prior to groundwater sampling. m BTOC – metres below top of well casing

RL (TOC) – Reduced Level, elevation at TOC in metres relative to Australian Height Datum (m AHD).

⁺ WL = Calculated groundwater level, in m AHD (calculated as RL(TOC) – SWL) Note: these values were used for groundwater flow direction analysis

L - litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

 μ S/cm – micro Siemens per centimetre (EC units).

DO – Dissolved Oxygen in units of milligrams per litre (mg/L)

All groundwater parameters (pH, EC and DO) were tested on site.

* Well found dry

With reference to **Table 9-3**, the field pH data indicated that the groundwater was slightly acidic (pH ranged from 5.72 to 6.54) with oxidising conditions present. Electrical Conductivity (EC) measurements were recorded in the range 417 to 1383 μ S/cm indicating that the groundwater was fresh to marginal in terms of water salinity.

Based on standing water levels the groundwater flow direction is to the south south easterly. This finding was not consistent with the regional flow direction due to extensive dewatering occurring on neighbouring properties. Based on available literature and the findings of the DSI (EI, 2014) natural groundwater flow is to south west.

9.3 LABORATORY ANALYTICAL RESULTS

9.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 9-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Tables T2** to **T6** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix D** and all laboratory analytical reports for tested soil samples are presented in **Appendix E**.

Table 9-4 Summary of Soil Analytical Results

No. of Primary Samples	o. of Primary Analyte M amples (r		Max. Conc. (mg/kg)	Sample Locations Exceeding Investigation Levels *
Heavy Metals				
13	Arsenic	<3	3	None
13	Cadmium	<0.3	<0.3	None
13	Chromium (Total)	0.8	4.5	None
13	Copper	<0.5	15	None
13	Lead	1	36	None
13	Nickel	<0.5	7.6	None
13	Zinc	0.9	120	None
13	Mercury	<0.05	<0.05	None
TRHs (including	BTEX)			
13	TRH C_6 - C_{10} minus BTEX (F1)	<25	<25	None
13	TRH >C ₁₀ -C ₁₆ (F2) minus Naphthalene	<25	<25	None
13	TRH >C ₁₆ -C ₃₄ (F3)	<90	<90	None
13	TRH >C ₃₄ -C ₄₀ (F4)	<120	<120	None
13	Benzene	<0.1	<0.1	None
13	Toluene	<0.1	<0.1	None
13	Ethylbenzene	<0.1	<0.1	None
13	Total Xylenes	<0.3	<0.3	None
13	Naphthalene	<0.1	<0.1	None
PAHs				
13	Benzo(a)pyrene	<0.1	0.1	None
13	Carcinogenic PAHs	<0.3	<0.3	None
13	Total PAHs	<0.8	1.5	None
Phenols				
7	Total Phenols	0.2	1.1	None
Asbestos (Conce	entrations in %w/w)			
7	Asbestos	ND	ND	None
OCPs				
7	OCP compounds	ND	ND	None
OPPs				
7	Total OPPs	ND	ND	None
PCBs				
7	Total PCBs	<1	<1	None
VOCs				
7	VOC compounds	ND	ND	None

With reference to **Tables T2 to T6** and **Table 9-4**, heavy metals, TRH, BTEX, PAH, OCP, OPP, PCB, Phenols and VOC concentrations were below the corresponding health based and ecological based SILs.

9.3.2 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Tables T7**, which also include the adopted GILs. Exceedances of the adopted groundwater criterions are summarised in **Table 9-5**. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix I**. Copies of the laboratory analytical reports are attached in **Appendix J**.

No. of Primary Samples	Analyte	Min. Conc. Max. Conc. (mg/kg) (mg/kg)		Sample Locations Exceeding Investigation Levels *
Heavy Metals				
4	Arsenic	<1	4	None
4	Cadmium	<0.1	<0.1	None
4	Chromium (Total)	<1	1	None
4	Соррег	3	5	MW4 - 3 μg/L BH202M – 3 μg/L BH203M – 5 μg/L BH205M – 3 μg/L
4	Lead	<1	<1	None
4	Nickel	<1	15	BH205M – 15 μg/L
4	Zinc	<5	59	MW4 - 19 μg/L BH205M – 59 μg/L
4	Mercury	<0.1	<0.1	None
TRHs (including	BTEX)			
4	TRH C_6 - C_{10} minus BTEX (F1)	<50	260	None
4	TRH >C ₁₀ -C ₁₆ (F2) minus Naphthalene	<60	<60	None
4	TRH >C ₁₆ -C ₃₄ (F3)	<500	<500	None
4	TRH >C ₃₄ -C ₄₀ (F4)	<500	<500	None
4	Benzene	<0.5	<0.5	None
4	Toluene	<0.5	<0.5	None
4	Ethylbenzene	<0.5	<0.5	None
4	Total Xylenes	<1.5	<1.5	None
PAHs				
4	Naphthalene	0.2	0.6	None
4	Total PAHs	<1	<1	None
Phenols				
4	Total Phenols	<10	<10	None

 Table 9-5
 Summary of Groundwater Analytical Results

No. of Primary Samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample Locations Exceeding Investigation Levels *
VOCs				
4	Vinyl chloride (Chloroethene)	<0.3	2.1	None
4	cis-1,2-dichloroethene	<0.5	8.1	None
4	Trichloroethene (Trichloroethylene,TCE)	<0.5	36	None
4	Tetrachloroethene (Perchloroethylene,PCE)	<0.5	64	BH205M – 64 μg/L
4	Other VOC compounds	ND	ND	None

With reference to **Table T7** and **Table 9-5**, all heavy metals, TRH, BTEX, PAH, Phenols and VOC concentrations were below the corresponding health based and ecological based GILs with the exception of:

- Copper in all monitoring wells (range $3 5 \mu g/L$) which exceeded the GIL of $1.3 \mu g/L$.
- Nickel in BH205M (15 μ g/L) which exceeded the GIL of 7 μ g/L.
- Zinc in MW1 (19 μ g/L) and BH205M (59 μ g/L) which exceeded the GIL of 15 μ g/L.
- PCE in BH205M (64 µg/L) which exceeded the GIL of 50 µg/L.

10. SITE CHARACTERISATION

10.1 ADDITIONAL SOIL CHARACTERISATION

On review of the soil results it appears that the concentrations of fill and natural soils are below the adopted SILs at the targeted borehole locations selected. As such, soils beneath the heritage building are considered suitable for the proposed residential use with minimal opportunities to soil access land use. Soils in the vicinity of BH2M, which is located in a proposed landscaping area, reported concentrations of the tested analytes below the adopted human health and ecological SILs for public open spaces.

10.2 ADDITIONAL GROUNDWATER CHARACTERISATION

An additional groundwater assessment was undertaken to characterise groundwater quality at the site, including on the northern (12-12 Rothschild Avenue) and southern portions (24 Rothschild Avenue) of the site. Characterisation of groundwater in the vicinity of the abandoned UST on the north western portion and up-gradient of 24 Rothschild Avenue could not be achieved due to a deeper buried concrete slab resulting in refusal during drilling works at BH201M and BH204M.

On review of the available groundwater results, the concentrations reported in groundwater are below the adopted ANZECC 2000 water quality guidelines for marine water ecosystems and adopted human health criteria with the exception of metals (copper, nickel and zinc) and PCE.

Concentrations of copper, nickel and zinc, were generally low and considered representative of background groundwater concentrations given there are no known sources of these metals within natural site soils and similar concentrations were evident within both up-gradient and down-gradient wells. Elevated metals in soil previously identified during the DSI (EI, 2014) were limited to the fill material as no elevated concentration identified in natural soils. This demonstrates that metals in fill had not leached into the natural soils and then groundwater. The reported concentrations of metals reported in groundwater are typical of an urban/industrial environment such as the Botany area and are considered to represent background conditions.

As discussed in **Section 9.3**, low concentration of various VOC compounds were reported in groundwater. The highest VOC concentrations were reported in up-gradient well BH205M, including a PCE Concentration at BH205M ($64\mu g/L$) above the adopted marine criteria ($50 \mu g/L$), and likely sourced from an off-site location. Given the nearest down-gradient receiving waters at the site, Alexandra Canal located 1.3 km south west of the site, it is considered that the reported VOC concentrations in groundwater will unlikely be present at the point of exposure and therefore are considered a low environmental risk. The human health risk to neighbouring sites are also considered low as the site and surrounding properties are situated in Management Zone 2 of the Botany Sand Aquifer in which extraction of groundwater for domestic purposes is prohibited.

El consider the low concentrations of VOC compounds reported in groundwater is a low human health risk via vapour intrusion for future site users including residents, construction workers, maintenance and commercial workers. However due to the presence of chlorinated solvents in groundwater and the taking into consideration the site history, the need for future soil vapour sampling and subsequent risk assessment should be addressed in the Remediation Action Plan.

Overall the additional groundwater investigation suggested that groundwater quality at the site is suitable for the proposed development, however further groundwater characterisation in the vicinity of

the abandoned UST must be considered should residual contamination be observed during remediation of the UST.

10.3 REVIEW OF CONCEPTUAL SITE MODEL

On the basis of investigation findings the CSM, discussed in **Section 5**, was considered to have appropriately identified contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps, as outlined in **Section 5.4** have largely been addressed; however a further assessment of risks posed by potential groundwater contamination in the vicinity of the UST on the north eastern portion of the site must be undertaken should residual impacts are evident following UST removal.

11. CONCLUSIONS

The property located at 12 - 22 & 24 Rothschild Avenue, Rosebery NSW, was the subject of an Additional Site Investigation for further characterisation purposes. Based on the findings of this assessment it was concluded that:

- The site comprised a broadly rectangular shaped block, covering a total area of approximately 0.84 hectares (8,403.3 m²). The site was bound by Rothschild Avenue to the east, Cressy Street to the south, Mentmore Avenue to the west, with residential and industrial buildings to the north;
- Current site use is predominantly commercial and light industrial;
- A review of Planning Street Cards available on the City of Sydney Council website, suggested the former site uses consisted of a variety of commercial and industrial activities including machinery merchants, timber storage, auto wiring and cables manufacturing, plywood manufacturing, assemblage of sheet metal, manufacturing electrical water heaters and used as a depot. Other key findings include; a 5000 gallon petrol tank installed in the mid 1970's, an electrical substation was present in the late 70's, and new roof sheeting was installed in 1982. Street planning cards were generally consistent with the previous site history survey undertaken (EI, 2014);
- Soil sampling and analysis were conducted at seven (7) targeted test bore locations (BH202M, BH206, BH207, BH208, BH209, BH210 and BH211) down to a maximum drilling depth of 5.8m BGL. These borehole locations targeted areas not previously accessible during initial DSI works (EI, 2014), including the heritage building located at 24 Rothschild Avenue;
- Three (3) additional groundwater wells were installed and sampled at targeted locations within the site, including up-gradient location along northern boundary (BH205M), central portion of 12-22 Rothschild Avenue (BH203M), and down-gradient location at 24 Rothschild Avenue (BH202M). Due to a buried concrete slabs in the vicinity of the abandoned UST and upgradient of 24 Rothschild Avenue, groundwater wells BH201M and BH204M could not be installed due to drilling rig refusal;
- The sub-surface layers comprised of fill materials of various constituents, comprising brown sands and sandy clays, underlain by Botany Sands;
- Groundwater was encountered at depths ranging from 4.22 to 4.95 meters below ground level. Former monitoring wells MW1 and MW2 were found dry (likely siltation);
- Results of soil samples collected from soil test boreholes reported concentrations of the selected analytes to be below the adopted human health based and ecological based SILs;
- Results of the groundwater samples collected from the newly installed wells (BH202M, BH203M and BH205M) and previous monitoring well (MW3) reported concentrations of the selected analytes to be below the adopted marine and human health based GILs, with the exception of various heavy metals (copper, nickel and zinc) and PCE. Concentrations of copper, nickel and zinc, were generally low and considered reflective of background groundwater concentrations;

- El consider the low concentrations of VOC compounds reported in groundwater is a low human health risk via vapour intrusion for future site users including residents, construction workers, maintenance and commercial workers. However due to the presence of chlorinated solvents in groundwater and the taking into consideration the site history, the need for future soil vapour sampling and subsequent risk assessment should be addressed in the Remediation Action Plan.
- On the basis of investigation findings the preliminary CSM discussed in **Section 5** was considered to have appropriately identified contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps outlined in **Section 5.4** have largely been addressed; however a further assessment of risks posed by potential groundwater contamination in the vicinity of the UST on the north eastern portion of the site must be undertaken should residual impacts be evident following UST removal.

Based on the findings of this report and with consideration of the Statement of Limitations (**Section 12**), El concludes that widespread contamination was not identified at targeted locations investigated in this additional investigation, which augmented the initial DSI. Soil concentrations reported in this ADSI did not exceed the adopted human health and ecological based SILs and groundwater concentrations did not exceed quality criteria at investigated locations at the site. It is concluded that the site can be remediated for proposed residential use following the preparation and implementation of a Remediation Action Plan. The RAP will also need to consider the findings of the initial DSI (EI, 2014).

12. RECOMMENDATIONS

In view of the above findings and in accordance with the NEPM 2013 guidelines, it is considered that the site will be made suitable for the proposed residential development on completion of the following recommendations:

- Preparation and implementation of a Remediation Action Plan to outline the removal of the impacted fill material identified in the initial DSI (EI, 2014) and the identified abandoned UST. The RAP should also consider the need for further groundwater characterisation in the vicinity of the abandoned UST should residual contamination be observed during remediation of the UST. The RAP should also consider the need for future soil vapour testing and subsequent risk assessment.
- Any material being removed from site (including virgin excavated natural materials or VENM) should be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines.
- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM.
- Validate that the excavated areas are left free of contamination by comparing analytical results for excavation surfaces and any backfill material, against the respective EPA thresholds.
- Preparation of a final site validation report by a qualified environmental consultant, certifying the suitability of the site for the proposed development.

13. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

El's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

ANZECC/ARMCANZ (2000) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

- Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Bouwer, H. (1978) Groundwater Hydrology, McGraw-Hill Ryerson, Limited, 480 p.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2006) Soil Investigation Levels for Urban Development Sites in NSW, in Guidelines for the NSW Site Auditor Scheme, 2nd Edn., NSW Dept. of Environment and Conservation, DEC 2006/121, April 2006.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DECCW (2009) *Waste Classification Guidelines, Department of Environment*, Climate Change and Water, New South Wales, DECCW 2009/806, December 2009.
- El Australia (2014) Detailed Site Investigation Report, 12 22 & 24 Rothschild Avenue, Rosebery NSW, Ref. E22282 AA_Rev1, 24 September 2014.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- EPA (2014) Technical Note: Investigation of Service Station Site Environment Protection Authority of New South Wales, EPA 2014/0315, April 2014.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- Johnson, P.C., and Ettinger, R.A. (1991) *Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings*, Environmental Science & Technology, 25, 1445-1452.
- McWhorter, D.B. and Sunada, D.K., (1977) *Ground-water Hydrology and Hydraulics, Water Resources Publications*, LLC. 304p.
- Merrick, N. P. (1994) A groundwater flow model of the Botany Basin, IAH/IEA Water Down Under '94 Conference, Adelaide, 21-25 Nov., Proceedings Vol. 2A, 113-118.
- Murphy CL (1997) *Acid Sulfate Soil Risk of the Botany Bay Sheet Department of Land and Water Conservation*, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) *Guidelines for the Use of Acid Sulfate Soil Risk Maps*, Department of Land and Water Conservation, Sydney, Second Edition.

- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- URS (2004), *Botany Groundwater Clean-up Project Environmental Impact Statement*, Orica Limited, November 2004
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

ACM	Asbestos-containing materials
ASS	Acid sulfate soils
ANZECC	Australian and New Zealand Environment Conservation Council
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
B(a)P	Benzo(a)Pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
COC	Chain of Custody
cVOCs	Chlorinated Volatile Organic Compounds (a sub-set of the VOC analysis suite)
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DO	Dissolved Oxygen
DP	Deposited Plan
EC	Electrical Conductivity
Eh	Redox potential
EPA	Environment Protection Authority
EMP	Environmental Management Plan
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
LNAPL	Light, non-aqueous phase liquid (also referred to as PSH)
DNAPL	Dense, non-aqueous phase liquid
EIL	Ecological Investigation Level
ESL	Ecological Screening Level
m	Metres
m AHD	Metres Australian Height Datum
m BGL	Metres Below Ground Level
mg/m ³	Milligrams per cubic metre
mg/L	Milligrams per litre
µg/L	Micrograms per litre
mV	Millivolts
MW	Monitoring well
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PAHs	Polycyclic Aromatic Hydrocarbons
рН	Measure of the acidity or basicity of an aqueous solution
PSH	Phase-separated hydrocarbons (also referred to as LNAPL)
PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control

RAP	Remediation Action Plan
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TDS	Total dissolved solids (a measure of water salinity)
TCLP	Toxicity Characteristics Leaching Procedure
TPH	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UCL	Upper Confidence Limit of the mean
USEPA	United States Environmental Protection Agency
UPSS	Underground Petroleum Storage System
UST	Underground Storage Tank

VOCs Volatile Organic Compounds (specific organic compounds which are volatile)

Additional Site Investigation Report 12 - 22 & 24 Rothschild Avenue, Rosebery NSW Report No. E22282 AB_Rev01

FIGURES

Additional Site Investigation Report 12 - 22 & 24 Rothschild Avenue, Rosebery NSW Report No. E22282 AB_Rev01

TABLES

Table T1 - Soil and Groundwater Samples Register

				Requested Analyses									
Date Sampled	Sample ID	Sample Type	Matrix	Heavy Metals*	TRH	BTEX	PAH	OCP/PCB/OPP	Asbestos	VOCs	Phenols	Primary Laboratory SGS Batch No.	Secondary Laboratory Envirolab Batch No.
	BH202_0.1-0.2			Х	Х	Х	Х	Х	Х	Х	Х		
	BH202_0.8-0.9			Х	Х	Х	Х						
	BH206_0.35-0.45			Х	Х	Х	Х	Х	Х	Х	Х		
	BH206_1.3-1.4			Х	Х	Х	Х						
	BH207_0.3-0.4	Primary		Х	Х	Х	Х	Х	Х	Х	Х	SE155671	
	BH207_0.8-0.9			Х	Х	Х	Х						
	BH208_0.1-0.2			Х	Х	Х	Х	Х	Х	Х	Х		-
6/08/16	BH208_0.7-0.8		Soil	Х	Х	Х	Х						
	BH209_0.1-0.2			X	X	X	X	Х	Х	Х	Х		
	BH209_0.7-0.8			Х	Х	Х	Х					-	
	BH210_0.2-0.4			Х	Х	Х	Х	Х	Х	Х	Х		
	BH210_0.7-0.8			X	X	X	X						
	BH211_0.3-0.4			X	X	X	Х	Х	Х	Х			
	QD100	Duplicate of BH202_0.1-0.2		X	X	X							151100
	Q1100			X	X	X	V			V	V	-	151436
	MIVV3			X	X	X	X			X	X		
	BH202M	Primary		X	X	X	X			X	X	SE156100	
17/08/14	BH203M		Water	X	X	X	X			X	X	SE156129	-
				X	X	X	X			X	X		
	GWQD1	Duplicate of BH205M		X	X	X							450050
	GWQT1			Х	X	Х						-	152056

Notes:

Samples are only tested for selected heavy metals, which are Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, and Zinc.

Sample ID	Arsenic ¹ (mg/kg)	Cadmium (mg/kg)	Chromium ² (mg/kg)	Copper (mg/kg)	Lead ³ (mg/kg)	Mercury⁴ (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)
BH202_0.1-0.2	3	<0.3	2	13	36	<0.05	2	120
BH202_0.8-0.9	<3	<0.3	2	8	3	<0.05	1	9
BH206_0.35-0.45	<3	<0.3	0.8	2.1	10	<0.05	<0.5	3
BH206_1.3-1.4	<3	<0.3	1.7	<0.5	1	<0.05	<0.5	1
BH207_0.3-0.4	<3	<0.3	2.7	1.8	4	<0.05	0.9	3.6
BH207_0.8-0.9	<3	<0.3	4.5	1.9	4	<0.05	1.4	4
BH208_0.1-0.2	<3	<0.3	3.6	15	33	<0.05	7.6	65
BH208_0.7-0.8	<3	<0.3	2.2	5.0	20	<0.05	2.2	34
BH209_0.1-0.2	<3	<0.3	1.4	1.8	5	<0.05	0.7	8
BH209_0.7-0.8	<3	<0.3	1.1	<0.5	1	<0.05	0.5	1.3
BH210_0.2-0.4	<3	<0.3	1.6	3.1	1	<0.05	0.5	0.9
BH210_0.7-0.8	<3	<0.3	1.6	0.8	2	<0.05	<0.5	1.2
BH211_0.3-0.4	<3	<0.3	2.4	4	6	<0.05	0.9	9.7
				SILs				
HIL B	500	150	500	30000	1200	120 ⁵	1200	60000
HIL C	300	90	300	17000	600	80	1200	30000
EIL	100 ⁵	NR	205	90	1260	NR	35	190

Table T2 – Summary of Soil Investigation Results for Heavy Metals

Notes:

	Highlighted concentration value indicates exceedance of all adopted HILs.
ххх	Bolded value indicates concentration exceeds EIL.
SIL	Soil investigation levels. Land uses applicable to each SIL are listed in Section 7.3 of EI Report E22282 AA.
HIL	Health-based investigation levels (mg/kg) as per NEPM 1999 Schedule B1 2013 Amendment.
EIL	Ecological Investigation Levels (mg/kg) as per NEPM. As the physiochemical properties of soil onsite was not tested, the most stringent EIL values were adopted in this assessment.
NL	'Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical, i.e. where the soil vapour is at equilibrium with the pore water, then the soil vapour source cannot exceed a level that would result in the maximum allowable vapour risk for the given scenario, therefore the limit is not limiting.
NR	No recommended soil assessment criteria are currently available for the indicated parameter(s).
1	Arsenic - HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer to NEPM 1999 Schedule B7 2013 Amendment).
2	HILs are for Chromium VI while EILs for Chromium III. Concentrations reported were total Chromium including both VI and III. Speciation of the compounds were not conducted as total Chromium were all under SILs.
3	Lead - HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.
4	Value shown is representative of inorganic mercury as provided in Table 1A(1) (refer to NEPM 1999 Schedule B1 2013 Amendment).
5	Aged values are applicable to arsenic contamination present in soil for at least two years. For fresh contamination refer to NEPM 1999 Schedule B5c 2013 Amendment.

Table T3 – Summary	y of Soil Investigation	Results for TPH, BTEX,	Naphthalene and VOCs
--------------------	-------------------------	------------------------	----------------------

Comula	Depth		Total Pe	etroleum (ma)	Hydroca (ka)	arbons	Demmente	Taluana	Ethyl	Total	Naphthalene	VOCa
ID	(m below ground level)	Primary Soil Texture	F1 ¹ F2 ² F3 ³		F4 ⁴	(mg/kg)	(mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	(Volatile) (mg/kg)	(mg/kg)	
BH202	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.D.		
BH202	_0.8-0.9	Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.A.
BH206_	0.35-0.45	FILL: Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.D.
BH206	_1.3-1.4	Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.A.
BH207	_0.3-0.4	FILL: Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.D.
BH207	_0.8-0.9	FILL: Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.A.
BH208	_0.1-0.2	FiLL: Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.D.
BH208	_0.7-0.8	FILL: Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.A.
BH209	_0.1-0.2	FILL: Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.D.
BH209_0.7-0.8		Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.A.
BH210_0.2-0.4		FILL: Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.D.
BH210_0.7-0.8		Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.A.
BH211_0.3-0.4		FILL: Sand	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	N.D.
					SILs							
	0 m to <1 m		45	110	NR	NR	0.5	160	55	40	3	NR
HSLA&B (Sand)	1 m to <2 m	Sand	70	240	NR	NR	0.5	220	NL	60	NL	NR
(cuna)	2 m to <4 m		110	440	NR	NR	0.5	310	NL	95	NL	NR
	0 m to <1 m		NL	NL	NR	NR	NL	NL	NL	NL	NL	NR
HSLC (Sand)	1 m to <2 m	Sand	NL	NL	NR	NR	NL	NL	NL	NL	NL	NR
	2 m to <4 m		NL	NL	NR	NR	NL	NL	NL	NL	NL	NR
50	a 5	Coarse grained	190*	120*	300	2800	50	85	70	105	170	NR
Eð		Fine grained	130	120	1300	5600	65	105	125	45	170	NR
Managom	ont Limite ⁶	Coarse grained	700	1000	2500	10000	NL	NL	NL	NL	NR	NR
wanagem		Fine grained	800	1000	3500	10000	NL	NL	NL	NL		NR

Notes:

	Highlighted concentration value indicates exceedance of HSL A&B.
XXX	Bolded and italic value indicates concentration only exceeds EIL A.
SIL	Soil investigation levels. Land uses applicable to each SIL are listed in Section 7.3 of EI Report E22282 AA.
HSL	Health screening levels. HSLs for silty and clayey soils were not considered in this assessment as the soil texture encountered during the investigation were primarily sand.
ESL	Ecological screening levels (mg/kg). ESL A is SIL for urban residential and public open sapce developments, whereas ESL D is SIL for commercial and industrial developments.
Management limits	As per Table 1 B(7) in NEPM 1999 Schedule B1 2013 Amendment.
NL	'Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical, i.e. where the soil vapour is at equilibrium with the pore water, then the soil vapour source cannot exceed a level that would result in the maximum allowable vapour risk for the given scenario, therefore the limit is not limiting.
NR	No recommended soil assessment criteria are currently available for the indicated parameter(s).
N.A.	Sample not tested for the analyte.
1	To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
2	To obtain F2 subtract naphthalene from the >C10-C16 fraction.
3	F3 refers to Total Recoverable Hydrocarbon >C16-C34.
4	F4 refers to Total Recoverable Hydrocarbon >C34-C40.
5	ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.
6	Management limits are applied after consideration of relevant ESLs and HSLs. BTEX and Naphtalene are not subtracted from the relevant fractions to obtain F1 and F2 when considering management limits.

Sample	Polyarom	Total Phenols			
ID	Carcinogenic PAHs (as Benzo[a]pyrene TEQ)	Benzo(a)pyrene	Total PAHs	(mg/kg)	
BH202_0.1-0.2	<0.3	<0.1	<0.8	1.1	
BH202_0.8-0.9	<0.3	<0.1	<0.8	N.A.	
BH206_0.35-0.45	<0.3	0.1	1.5	0.5	
BH206_1.3-1.4	<0.3	<0.1	<0.8	N.A.	
BH207_0.3-0.4	<0.3	<0.1	<0.8	0.2	
BH207_0.8-0.9	<0.3	<0.1	<0.8	N.A.	
BH208_0.1-0.2	<0.3	0.1	1.3	0.2	
BH208_0.7-0.8	<0.3	0.1	1.4	N.A.	
BH209_0.1-0.2	<0.3	<0.1	<0.8	0.2	
BH209_0.7-0.8	<0.3	<0.1	<0.8	N.A.	
BH210_0.2-0.4	<0.3	<0.1	<0.8	0.2	
BH210_0.7-0.8	<0.3	<0.1	<0.8	N.A.	
BH211_0.3-0.4	<0.3	<0.1	<0.8	0.4	
		SILs			
HIL B	4	NR	400	45000	
HIL C	3	NR	300	40000	
ESLs	NR	0.7	NR	NR	

Table T4 – Summary of Soil Investigation Results for PAH & Phenols

Notes:

110100.	
	Highlighted concentration value indicates exceedance of HIL
ХХХ	Bolded value indicates concentration ESLs
SIL	Soil investigation levels. Land uses applicable to each SIL are listed in Section 7.3 of EI Report E22282 AA.
HIL	Health-based investigation levels (mg/kg).
ESL	Ecological screening levels (mg/kg) as per NEPM 1999 Schedule B1 2013 Amendment.
NR	No recommended soil assessment criteria are currently available for the indicated parameter(s).
NA	Sample not tested for the analyte.

Sample				0	CPs				Total OPPs		
ID	Aldrin (mg/kg) Dieldrin (mg/kg)		Endrin (mg/kg)	Chlordane (mg/kg)	Heptachlor (mg/kg)	DDT (mg/kg)	DDD (mg/kg)	DDE (mg/kg)	(mg/kg)	Total PCBs (mg/kg)	
BH202_0.1-0.2	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	N.D.	<1	
BH202_0.8-0.9	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
BH206_0.35-0.45	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	N.D.	<1	
BH206_1.3-1.4	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
BH207_0.3-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2 <0.2		N.D.	<1	
BH207_0.8-0.9	N.A.	N.A.	N.A.	N.A.	N.A.	N.A. N.A.		N.A.	N.A.	N.A.	
BH208_0.1-0.2	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2 <0.2		<0.2	N.D.	<1	
BH208_0.7-0.8	N.A.	N.A.	N.A.	N.A.	N.A.	N.A. N.A.		N.A.	N.A.	N.A.	
BH209_0.1-0.2	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2 <0.2		<0.2	N.D.	<1	
BH209_0.7-0.8	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
BH210_0.2-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	N.D.	<1	
BH210_0.7-0.8	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
BH211_0.3-0.4	<0.1	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	N.D.	<1	
SILs											
HIL B	Tota	al 10	20	90	10		Total 600		NR	1	
HIL C	Tota	al 10	20	70	10		Total 400		NR	1	
EIL A	NR	NR	NR	NR	NR	180	NR	NR	NR	NR	

Table T5 – Summary of Soil Investigation Results for OCPs, OPPs & PCBs

Notes:

Highlighted concentration value indicates exceedance of all HILs.

SIL Soil investigation levels. Land uses applicable to each SIL are listed in Section 7.3 of EI Report E22282 AA.

HIL Health-based investigation levels (mg/kg).

EIL Ecological Investigation Levels (mg/kg) as per NEPM.

NR No recommended soil assessment criteria are currently available for the indicated parameter(s).

N.D. Concentrations of all tested analytes in this group was under laboratory's practical quantifation limit.

N.A. Sample not tested for analyte.

1 p,p'-DDT of concentration 0.1 mg/kg was dected in this sample.

Table T6 – Summary of Soil Investigation Results for Asbestos

Sample ID	Asbestos (% w/w)
BH202_0.1-0.2	<0.01
BH202_0.8-0.9	N.A.
BH206_0.35-0.45	<0.01
BH206_1.3-1.4	N.A.
BH207_0.3-0.4	<0.01
BH207_0.8-0.9	N.A.
BH208_0.1-0.2	<0.01
BH208_0.7-0.8	N.A.
BH209_0.1-0.2	<0.01
BH209_0.7-0.8	N.A.
BH210_0.2-0.4	<0.01
BH210_0.7-0.8	N.A.
BH211_0.3-0.4	<0.01
	SIL
HSL	0.01%

Notes:

Highlighted concentration value indicates exceedance of HSL.

SILSoil investigation level.HSLHealth screening level.

eiaustralia

Table T7 – Summary of Groundwater Investigation Results

		Heavy Metals								BT	ΈX	TRHs					PAH			VOCs				
Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Total Xylene	F1*	F2**	F3 (>C ₁₆ -C ₃₄)	F4 (>C ₃₄ -C ₄₀)	Naphthalene	Other PAHs	Total Phenols	Vinyl chloride (Chloroethene)	cis-1,2-dichloroethene	Trichloroethene (Trichloroethylene,TCE)	Tetrachloroethene (Perchloroethylene,PCE)	Other VOCs
MW3	<1	<0.1	<1	3	<1	<0.1	<1	19	<0.5	<0.5	<0.5	<1.5	<50	<60	<500	<500	0.5	<1	<10	<0.3	<0.5	1.3	5.2	N.D.
202M	4	<0.1	<1	3	<1	<0.1	<1	<5	<0.5	<0.5	<0.5	<1.5	<50	<60	<500	<500	0.2	<1	<10	<0.3	<0.5	<0.5	<0.5	N.D.
203M	2	<0.1	1	5	<1	<0.1	<1	8	<0.5	<0.5	<0.5	<1.5	<50	<60	<500	<500	0.6	<1	<10	<0.3	<0.5	<0.5	4.7	N.D.
205M	<1	<0.1	1	3	<1	<0.1	15	59	<0.5	<0.5	<0.5	<1.5	260	<60	<500	<500	0.3	<1	<10	2.1	8.1	36	64	N.D.
												(GIL											
GIL (Marine Waters)	NR	0.7 ³	27 (Cr III) 4.4 (Cr VI)	1.3	4.4	0.1 ³	7	15 ¹	500 ¹	NR	NR	NR	NR	NR	NR	NR	50	NR	400	3	60	NR	50	NR
HSL A & B ²	NR	NR	NR	NR	NR	NR	NR	NR	800	NL	NL	NL	1000	1000	NR	NR	NR	NL	NR	NR	NR	NR	NR	NR
HSL C ²	NR	NR	NR	NR	NR	NR	NR	NR	NL	NL	NL	NL	NL	NL	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR

Notes: All results are in units of µg/L.

Highlighted concentration value indicates exceedance of adopted GILs.

- GIL Groundwater Investigation Level. All GIL values sourced from National Environment Protection (Assessment of Site Contamination) Measure 1999 Amendment 2013, Schedule (B1) Guideline on Investigation Levels for Soil and Groundwater, (NEPC) Investigation levels apply to Marine Waters for typical slightly-moderately disturbed systems.
- HSL Health-based Screening Level. Land uses applicable to each HSL are listed in Section 7.3 of El Report E22282 AA.

NL 'Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical, i.e. where the soil vapour is at equilibrium with the pore water, then the soil vapour source cannot exceed a level that would result in the maximum allowable vapour risk for the given scenario, therefore the limit is not limiting.

- NR No recommended soil assessment criteria are currently available for the indicated parameter(s).
- N.D. Concentrations of all tested analytes in this group was under laboratory's practical quantifation limit.
- * To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
- ** To obtain F2 subtract Naphthalene from the >C10-C16 fraction.
- 1 Indicated threshold value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.
- 2 NEPC (2013) Table 1A(4) Groundwater HSL A & HSL B for vapour intrusion at the contaminant source depth ranges in sands 2m to <4m, which is consistent with the groundwater sampling depth.
- 3 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

APPENDIX A

PROPOSED DEVELOPMENT SKETCH DRAWINGS

JPR

JPR Architects Pty Ltd Level 4, 50 Stanley St East Sydney NSW 2010 T +61 2 9366 1133

ABN 52 255 001 003

4

www.jpra.com.au

ABN 52 255 001 003

www.jpra.com.au

www.jpra.com.au

ABN 52 255 001 003 www.jpra.com.au

1.14

JPR Architects Pty Ltd Level 4, 50 Stanley St East Sydney NSW 2010

T +61 2 9366 1133 ABN 52 255 001 003

www.jpra.com.au

APPENDIX B Borehole Logs

BOREHOLE: BH201M

Project	Mixed Residential and Commercial Building
Location	12-24 Rothschild Avenue, Rosebery, NSW
Position	Refer to Figure 2
Job No.	E22282
Client	Maville Park Pty Ltd

Contractor Hart Geo Pty Ltd Drill Rig Ute Mounted Inclination -90°
 Sheet
 1
 OF
 1

 Date Starte
 6/8/16
 0

 Date Complete
 6/8/16
 0

 Logged
 BY/EW
 Date:

 Checket
 EG
 Date:

			Dril	ling		Sampling				Field Material Desc	riptio	n		
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	DT			0.0	0.20			α. α. α α. α. α.	-	Concrete Slab: 0.2 thickness			CONCRETE HARDSTAND	
		-	NNE	- - 0.5	0.20			\sim	-	FILL: SAND, fine to medium grained, brown, trace fine grained gravel, moist, no odour.	-	-	FILL	-
	AD/T		G/	-				$\overset{\times}{\sim}$						
				- 	1.00			\bigotimes		Hole Terminated at 1.00 m				
				-						Refusal on burried concrete slab.				
				- 1.5— -										-
				- 20-										-
-07-05				-										
15 Prj: EIA 1.03 2014				2.5										-
: EIA 1.03 2014-07-0				-										
itu Tool - DGD Lib				3.0 — -										-
Datgel Lab and In S				- - 3.5 —										-
6 14:34 8.30.004				-										
ngFile>> 24/08/201				4.0										-
_AB.GPJ < <drawi< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawi<>				-										
EHOLE 3 E22282				4.5 — -										-
3 Log IS AU BOR														
EIA LIB 1.03.GLI						This borehole	log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.	

14:34 8.30.004 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Pd; EIA 1.03 2014-07-05

24/08/2016

AB.GPJ <<DrawingFile>>

= 22282

ON IS AU RORFHOLE 3

11B 1 03 GLB

₫

Project Mixed Residential and Commercial Building Location 12-24 Rothschild Avenue, Rosebery, NSW Position Refer to Figure 2

Job No. Client Refer to Figure 2 E22282

Maville Park Pty Ltd

Contractor BG Drilling Pty Ltd Drill Rig Track Mounted Inclination -90°
 Sheet
 1
 OF
 1

 Date
 Start
 6/8/16
 6/8/16

 Date
 Completed
 6/8/16
 6/8/16

 Logged
 BY/EW
 Date:
 Checked EG
 Date:

BOREHOLE: BH202M

Drilling Sampling **Field Material Description** PIEZOMETER DETAILS Static Water Level JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE ID RECOVERED BH202M SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) 1202M DEPTH RL 0 FILL: SAND; fine to medium grained, pale brown / brown. = Caticrefever -BH202M ES 0.10-0.20 m PID = 1 ppm BH202M ES 0.60 0.50-0.60 m PID = 0.9 ppm SP SAND; fine to medium grained, grey-brown, no odour. BH202M ES 0.80-0.90 m PID = 0.9 ppm Cuttings 1x uPVC 50 mm casing BH202M ES 1.80-1.90 m 2 Bentonite М ADT 3 1x uPVC 50 mm slotted screen 4 Sand 7/08/16 V W 5 5.80 Hole Terminated at 5.80 m Target depth reached. Borehole converted to monitoring well. 6 7 8 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.

		R								В	OR	EHOLE: BH203M
c	eia	au ation I R	str	alia Geotechnical	Project Location Position Job No. Client	Mixe 12-2 Refe E222 Mavi	d Resid 4 Roth r to Fig 282 Ile Park	dentia schild jure 2 < Pty	al and Commercial Building d Avenue, Rosebery, NSW 2 Contractor Hart Geo Pty Ltd Drill Rig Ute Mounted Inclination -90°	Ltd		Sheet1OF1Date Started6/8/16Date Completed6/8/16LoggedBY/EWDate:Checked EGDate:
F		Dri	ling		Sampling				Field Material Des	cripti	on	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	PIEZOMETER DETAILS ID Static Water Level BH203M
	Τ		0-				\bigotimes	<u> -</u>	Bitumen pavement	1		eaticreever
			-	0.60					FILL: SAND, fine to medium grained, brown, trace fine grained gravel, moist, no odour.	-		
			-					SP	SAND; fine to medium grained, grey-brown, no odour.			
			1									Cuttings
AD/T	-		2							м	-	Bentonite
ib: EIA 1.03 2014-07-05 Pŋ: EIA 1.03 2014-07-05		 ▲ 17/08/16	4									1x uPVC 50 mm slotted screen
34 8.30.004 Datgel Lab and In Situ Tool - DGD L			5	6.00						w		
EHOLE 3 E22282_AB.GPJ < <drawingfile>> 24/08/2016 14:3</drawingfile>									Hole Terminated at 6.00 m Target depth reached. Borehole converted to monitoring well.			
IS AU BOF												
EIA LIB 1.03.GLB Log			8—		This boreh	nole lo	 g shoul	d be	read in conjunction with Environmental Investigations Austr	alia's	accon	npanying standard notes.

BOREHOLE: BH204M

Project	Mixed Residential and Commercial Building
Location	12-24 Rothschild Avenue, Rosebery, NSW
Position	Refer to Figure 2

Position Job No.

Client

E22282 Maville Park Pty Ltd Contractor Drill Rig

Hart Geo Pty Ltd Ute Mounted Inclination -90°

		Dri	ling		Sampling				Field Material Des	criptio	on		_
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F			0.0 —	0.05				1 -	Bitumen pavement - 0.05m thick	1		PAVEMENT	T
			-				\otimes	-	FILL: SAND, fine to medium grained, brown, trace fine	1		FILL	
			-	-			\bigotimes		grained gravel, moist, no odour.				
			-				\mathbb{N}						
5		NE	0.5-				$ \rangle\rangle$						
A		GM	- 0.5				\mathbb{X}	1					
			-	-			$ \rangle\rangle$						
			-	-			\mathbb{X}						
			-	1.00			\otimes						
			—1.0—	1.00			p		Hole Terminated at 1.00 m	+			+
			-	-					Refusal on burried concrete slab.				
			-]									
			-	_									
			1.5 —	_									
			-	-									
			-	-									
			-	-									
			-										
			2.0]									
			-	_									
14-07-0			-	-									
1.03 20			-	-									
'ŋ: EIA			2.5 —	-									
1 40-70			-	-									
3 2014			-										
EIA 1.0			-	_									
			3.0 —	_									
01 - DGI			-	-									
Situ IO			-	-									
and In			-	-									
tgel Lat			35-										
J04 Da				4									
1 8.30.0			-	-									
6 14:34			-	-									
/08/201			-	-									
6>> 24			4.0 —	1									-
awing+1			-]									
			-	4									
AB.GP.			-	-									
77787			4.5 —	-									.
Е 3 Е			-	-									
ОКЕНО			-	-									
AU BC			-	1									
Log 15			50-	1									
J3. GLB			0.0		This boreho	ole loo	g shoul	d be	read in conjunction with Environmental Investigations Austr	alia's	accor	npanying standard notes.	
						- •							
EIA													

		C	2								BC	DR	EHOLE: E	3H205M
	e	ia	au	str	alia	Project Location	Mixeo 12-24	d Resid 4 Roth	dentia schild	al and Commercial Building Avenue, Rosebery, NSW			Sheet	1 OF 1
	COM	arrender	1019 1 16	rnigaation	1 Georgennical	Position	Refe	r to Fig	gure 2				Date Started	6/8/16
						Job No. Client	E222 Mavil	82 le Parl	k Pty	Contractor Hart Geo Pty Lt Ltd Drill Rig Ute Mounted	td		Logged BY	EW Date:
										Inclination -90°			Checked EG	Date:
	_		Dril	ling		Sampling				Field Material Desci	riptio	n	DIEZOMETER	
		SISTANCE	ATER	:PTH etres)	DEPTH	SAMPLE OR FIELD TEST	COVERED	APHIC G	CS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	DISTURE	NSISTENC) NSITY	PIEZOMETER ID Static Water Level BH205	DETAILS
		빋씵	Ň	<u>قة</u> 	RL		RE	53	SN		N N N N N N N N N N N N N N N N N N N	SЩ	BH20	
01614:34 8.30.004 Daget Lab and In Situ Tool - DGD Lib: ElA 1.02 2014:07-35 Prj: El					<u>1.70</u>				SP	Bitumen pavement				 Edit credever Cuttings 1x uPVC 50 mm casing Bentonite 1x uPVC 50 mm Slotted screen Sand Sand
ile>> 24/08/201				-						Borehole converted to monitoring well.				-
J < <drawingfi< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> .</td></drawingfi<>				-										.
22282_AB.GP				7 —										-
REHOLE 3 E				-										
og IS AU BOF				-										
A LIB 1.03.GLB L		1]	8—	II	This bore	nole log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accom	npanying standard not	es.
ш 📕														

٦

Г

BOREHOLE: BH206

Project	Mixed Residential and Commercial Building
Location	12-24 Rothschild Avenue, Rosebery, NSW
Position	Refer to Figure 2

Job No. Client Refer to Figure 2 E22282

Maville Park Pty Ltd

Contractor BG Drilling Pty Ltd Drill Rig Track Mounted Inclination -90°

Sheet		1	OF	1
Date Sta	rted	6/	8/16	
Date Cor	npleted	6/	8/16	
Logged	BY/EW	D	ate:	
Checked	EG	D	ate:	

		Dril	ling		Sampling				Field Material Desc	riptio	on		_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
DT			0.0				4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	-	Concrete Slab: 0.35m thickness			CONCRETE HARDSTAND	Γ
			- 0.5 — -	0.35	BH206 ES 0.35-0.45 m PID = 0.8 ppm			-	FILL: SAND, fine to medium grained, brown-grey / pale brown, moist, no odour.	-		FILL	-
AD/T	-	GWNE	- - 1.0 — -	1.20	BH206 ES 0.90-1.00 m PID = 0.5 ppm						-		
			- - 1.5 -		BH206 ES 1.30-1.40 m PID = 0.8 ppm			Зг	SAND; fine to medium grained, yellow-brown / pale brown / orange - brown, moist, no odour.	м		AEOLIAN DEPOSITS	-
			- 	2.00	BH206 ES 1.90-2.00 m PID = 0.9 ppm				Hole Terminated at 2.00 m				+
A 1.03 2014-07-05									larget depth reach. Backfilled with drilling spoils and completed with concrete.				
A 1.03 2014-07-05 Pŋ; El			2.5										-
In Situ Tool - DGD Lib: El			3.0 —										
8.30.004 Datgel Lab and			- 3.5 — -										
ingFile>> 24/08/2016 14:3-			- - 4.0										-
E22282_AB.GPJ < <drawi< td=""><td></td><td></td><td>- - 4.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> .</td></drawi<>			- - 4.5										.
Log IS AU BOREHOLE 3			-										
IA LIB 1.03.GLB			5.0		This borehole	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's i	accon	npanying standard notes.	

Project Mixed Residential and Commercial Building Location 12-24 Rothschild Avenue, Rosebery, NSW Refer to Figure 2 Position

Job No. Client

E22282 Maville Park Pty Ltd

BG Drilling Pty Ltd Contractor Drill Rig Track Mounted Inclination -90°

BOREHOLE: BH207

Sheet 1 OF 1 Date Started 6/8/16 Date Completed 6/8/16 Logged BY/EW Date: Checked EG

Date:

Drilling Sampling Field Material Description											_		
	METHOD	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE		STRUCTURE AND ADDITIONAL OBSERVATIONS	
F	DT		0.0-	-			5 4 4 5 4 5 F	-	Concrete Slab: 0.3m thickness			CONCRETE HARDSTAND	
			0.5-	0.30	BH207 ES 0.30-0.40 m PID = 1 ppm			-	FILL: SAND, fine to medium grained, brown, moist, no odour.	-		FILL	-
	-	SWNE	- - - 1.0-		BH207 ES 0.80-0.90 m PID = 1.1 ppm						-		-
	AD/T		-	1.10	BH207 ES 1.20-1.30 m PID = 0.6 ppm			SP	SAND; fine to medium grained, yellow-brown / pale brown / orange - brown, moist, no odour.			AEOLIAN DEPOSITS	
			1.5 — - -	-						м			-
			2.0	2.00	BH207 ES 1.90-2.00 m PID = 0.4 ppm				Hole Terminated at 2.00 m Target depth reach. Backfilled with drilling spoils and completed with concrete.				
13 FIJ. EIM 1.03 20 14-07-0			2.5-	-									-
1 EIN 1:03 2014-07-0				-									
			-	-									
34 0.30.004 Laiger			3.5-	-									-
Igriers zerooraulu			4.0-	-									-
WEIGSS CLOCED TO MININ			- - 4.5-	-									-
			-	-									
A LID ו.טט.טרם בטא			_ _{5.0}	<u> </u>	This borehol	le lo	 g shoul	d be	read in conjunction with Environmental Investigations Austra	 lia's	accor	npanying standard notes.	
-													_

Project Mixed Residential and Commercial Building Location 12-24 Rothschild Avenue, Rosebery, NSW Position Refer to Figure 2 Job No. E22282

Maville Park Pty Ltd

Client

Contractor -Drill Rig --90° Inclination

BOREHOLE: BH208

1 OF 1 Sheet Date Started 6/8/16 Date Completed 6/8/16 Logged BY/EW Date: Checked EG Date:

		Dril	ling		Sampling				Field Material Desc	ript	tior	ı		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE .	CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
Ц			0.0 —	0.10			P	1 -	Concrete Slab: 0.1m thickness			_	CONCRETE HARDSTAND	T
					BH208 ES 0.10-0.20 m PID = 0.1 ppm			-	FILL: SAND, fine to medium grained, brown, trace of fine grained gravel, moist, no odour.	-			FILL	
НА	-	GWNE		-	BH208 ES 0.70-0.80 m PID = 0.2 ppm					-	-	-		
				1.10	BH208 ES 1.20-1.30 m PID = 0.1 ppm		\mathbf{x}	SP	SAND; fine to medium grained, brown, moist, no odour.	N	И		AEOLIAN DEPOSITS	
				-			····		Hole Terminated at 1.50 m Target depth reach. Backfilled with drilling spoils and completed with concrete.					t
6 0			2.0	-										
05 Pg: EIA 1.03 2014-07-			- 2.5—	-										
u LID: EIA 1.03 2014-07-			- - 3.0 —	-										
			-	-										
17.74 0.00.004 Darger			3.5 — - -	-										
กากราก ระเทณ			4.0											
E2282_AB.GPJ \\U			- - 4.5—											
р IS AU BUREHULE о			-											
	1	I	5.0 —	ı	This borehold	e log	j shoul	d be	read in conjunction with Environmental Investigations Austra	lia's	s ad	ccon	npanying standard notes.	

Client

Project Mixed Residential and Commercial Building Location 12-24 Rothschild Avenue, Rosebery, NSW Position Refer to Figure 2 Job No. E22282 Maville Park Pty Ltd

Contractor

Drill Rig

-

-

1 OF 1 Sheet Date Started 6/8/16 Date Completed 6/8/16 Logged BY/EW Date: Checked EG Date:

	1							Inclination -90° Checked EG Date:							
			Dril	ling		Sampling				Field Material Desc	riptic	n	1		
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
	DT			0.0	0.10			₽⊾ 	-	Concrete Slab: 0.1m thickness			CONCRETE HARDSTAND		
			NE	-	0.50	BH209 ES 0.10-0.20 m PID = 0.1 ppm			-	FILL: SAND, fine to medium grained, brown / orange, moist, no odour.	-		FILL .		
	HA	-	GW	0.5					SP	SAND; fine to medium grained, yellow, moist, no odour.		-	AEOLIAN DEPOSITS		
				-	1.00	0.70-0.80 m PID = 0.1 ppm					м				
										Hole Terminated at 1.00 m Target depth reach. Backfilled with drilling spoils and completed with concrete.					
				1.5 - - -											
2014-07-05				2.0											
03 2014-07-05 Prj: EIA 1.03				- 2.5 — -											
Situ Tool - DGD Lib: EIA 1.				 3.0									-		
8.30.004 Datgel Lab and In				- 3.5 -											
vingFile>> 24/08/2016 14:34				- - 4.0									-		
3 E22282_AB.GPJ < <drav< th=""><td></td><td></td><td></td><td>- - 4.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drav<>				- - 4.5									-		
Log IS AU BOREHOLE 3															
EIA LIB 1.03.GLB				0.0		This borehole	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	ilia's a	accor	npanying standard notes.		

BOREHOLE: BH210

Project	Mixed Residential and Commercial Building
Location	12-24 Rothschild Avenue, Rosebery, NSW

Position Job No.

Client

Refer to Figure 2 E22282

Maville Park Pty Ltd

Contractor BG Drilling Pty Ltd Drill Rig Track Mounted Inclination -90°
 Sheet
 1
 OF
 1

 Date Started
 6/8/16
 6/8/16

 Date Complete
 6/8/16
 6/8/16

 Logged
 BY/EW
 Date:

 Checked EG
 Date:
 6/8/16

		Dril	ling		Sampling				Field Material Desc	riptio	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
DT			0.0	0.20				-	Concrete Slab: 0.2m thickness			CONCRETE HARDSTAND	Τ
AD/T	-	GWNE	- - 0.5 <i>-</i>	0.20	BH210 ES 0.20-0.40 m PID = 0 ppm			-	FILL: SAND, fine to medium grained, brown-grey / pale brown, moist, no odour.	-	-	FILL	
			-	1.00	BH210 ES 0.70-0.80 m PID = 0 ppm			SP	SAND; fine to medium grained, yellow, moist, no odour.	м		AEOLIAN DEPOSITS	
									Hole Terminated at 1.00 m Target depth reach. Backfilled with drilling spoils and completed with concrete.				
			- 1.5—										
			- - 20										
14-07-05			-										
7-05 Pŋ: EIA 1.03 20			- 2.5—										
Lib: EIA 1.03 2014-0			- - - 30										
d In Situ Tool - DGD			-										
.30.004 Datgel Lab an			- 3.5 — -										
24/08/2016 14:34 8			- - 4.0-										
3PJ < <drawingfile>></drawingfile>			-										
OLE 3 E22282_AB.(- 4.5—										
Log IS AU BUREH													
EIA LIB 1.03. GLB					This borehold	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.	

BOREHOLE: BH211

Project	Mixe
Location	12-2
Position	Refe
Job No.	E22
Client	Mav

Mixed Residential and Commercial Building 12-24 Rothschild Avenue, Rosebery, NSW Refer to Figure 2 E22282

Maville Park Pty Ltd

Contractor BG Drilling Pty Ltd Drill Rig Track Mounted Inclination -90°
 Sheet
 1
 OF
 1

 Date Started
 6/8/16
 6/8/16

 Date Complete
 6/8/16
 6/8/16

 Logged
 BY/EW
 Date:

 Checked EG
 Date:
 6/8/16

		Dri	lling		Sampling				Field Material Desc	riptic	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
DT		Ш	0.0-	0.00			A. A. A. A.	-	Concrete Slab: 0.3m thickness			CONCRETE HARDSTAND	T
AD/T		GWN	0.5—	0.30	BH211 ES 0.30-0.40 m PID = 0 ppm			-	FILL: SAND, fine to medium grained, brown-grey / pale brown, moist, no odour.		-	FILL	T
				0.00					Hole Terminated at 0.60 m Refusal on burried concrete slab.				
			- 1.0—	-									
			-	-									
			1.5										
				-									
00			-	-									
1. EIA 1.00 2017-			- 2.5 <i>-</i>										
100.00-107.00-1			-	-									
			- 3.0 <i>—</i>	-									
			-	-									
			3.5-	-									
#0'#1 0109/00/#3			-										
- And			-	-									
			- 4.5—										
A BOREIOLE 3			-	-									
			5.0	1									
					This borehold	e lo	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.	

APPENDIX C Field Data Sheets

Water Quality Meter Calibration Log

Instrument: El WQM 003 (Hanna Multi Parameter 9828 - Serial no. 08333310)

Room Temperature: 24.5°C

Sensor (Unit of measure)	Standard Solutions Used (Item Code / Name)	Solution Batch Number	Temperature Adjusted Calibration	Instrume	ent Reading
			Solution Value	Initial	Post Calibration
	HI7007	8290	7.01	7.25	7.02
рН	H=7004L	8498	4.01	4.13	4.01
	HI7010	8072	10.01	10-11	10.04
ORP (mV)	HI702 (60(240.0	239.9	240.0
Conductivity	HIFOJIL	8656	1413	1353	1412
(µs/cm)	HI 7030L	8661	12830	13150	12890
DO Seturation	Ambient Ain	N.A.	100%	112.0%	99.9%
(%)	Soction Retab subfield Pejoniscel Water	278121 + BH 000029-001	0%	0-3%	0.0%
Temperature (°C)	Thermanetre	N/A	23.7°C	23.55%	23.7°C

Calibrated by: CARMEN YZ Calibration Date: 20 July 2016 Next Calibration Due: August 2016

.

Notes:

DO Membrane Replaced

,

					-										
Site Addro	ess:	12-24 R	othschil	& AV€, I	Rosobar	M_	Job Numb	er. CAARRAA							
Client:	5,	ss man	\$ (0.			2	Date:	17108116							
Field Staf	Ŧ:	A.MCAI	1(4-1/				Well ID:	MWI							
Well Loca	ation:	N	W Lorne	N			Round No	:							
WELL 84	ACKGROU	IND													
Well Insta	allation Dat	te:	15/08/	2014			Well Stick	up (m): an HIC							
Initial We	ll Depth (n	nbgl);	5.0	0 /	4:799		Screen Int	erval (mbol): 2-4							
Previous	Sampling	Date:	ý	615119			Previous S	SWL (m): 2,378							
PRE PUR	RGE														
Welt Hea	d Conditio	n:	nallit				PID Head	space (ppm):							
Total Wel	Depth (m	nbal): M	⁄) =t=	- 11 -	4.<12		Water Me	asure Device:							
SWL (mb	toc):	<u>-37 Ft</u>		dri	<u> e</u> e		Purge Vol	= Water Column x 6 (50mm Well)							
WaterCo	olumn (m):				3		Purce Vol	time (I):							
PHASE S	EPARATI		CARBON	IS(PSH)			94 101								
Depth to	PSH (mhtr						PSH View	ally Confirmed:							
PID Headspace (ppm): PSH Thickness (mm):															
LOW FLOW: PURGING & SAMPLING															
Danthof	Dump Info						E111 7:								
Pupe a P		ulater / co	:1.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	}	nu imer:	171							
Woether		juiator (ps	ı);	<u>x</u>			Discharge								
vveamer	Conditions	3:		$\frac{\sqrt{2}}{\sqrt{2}}$	£ <u>~~</u>		Cycle:	<u>مېر</u>							
weather Conditions: ۲۰۰۰ Cycle: ۲۰۰۰ Pumpon time: ۲۰۰۰ Pump off time:															
weather	rump on time: QM Neather Conditions:														
WA TER (Ump on ume: Ump off time: /eather Conditions: ////////////////////////////////////														
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (mg/L)	рH	Comments (colour, turbidity, odour etc.)							
	ļ														
							1								
·······															
	Stabilisat consecut	ion range: ive reading	15	4 /- 3%	+/- 10mV	+/- 10%	+/- 0.05								
OT ≊ ⊣ER (COMMEN	TS:			Not en	na vah	wate	1 to sample.							
		i	used be	ailer <	son n	vater	(aptore)	d, did not recharge.							

1. 1

				·····			······								
Site Addr	ess:	12-24	Roths	child A	re, Rosa	beinf	Job Numb	er: E22282							
Client:	Svs	isman .	+ (0			N.	Date:	17108/16							
Field Staf	ff:	A.MI	11115-1-2/				Well ID:	MW2							
Well Loca	ation:	1	NE LOV	ner			Round No:	: 2							
WELL BA	ACKGROU	IND													
Well Insta	allation Da	te:	1510	18/14			Well Stick	up (m): - 0 18							
Initial We	Il Depth (n	nbgi):	<u>5.</u> C	<u>۵۵</u> ξ			Screen Int	terval (mbgl): 2 - 5							
Previous	Sampling	Date:	261	08/14			Previous S	SWL (m): 3.875							
PRE PUF	RGE														
Well Hea	d Conditio	n:	gattic				PID Heads	space (ppm):							
Total We	ll Depth (m	nbgl):	- 14	F184 [+	= 4.52	ſa	Water Mea	asure Device:							
SWL (mb	toc):		DQ	1			Purge Vol	= Water Column x 6 (50mm Well)							
Water Co	olumn (m):		-	*			Purge Vol	ume (L):							
PHASE S	SEPARATE	ED HYDRO	CARBON	IS(PSH)											
Depth to	PSH (mbto	oc):					PSH Visua	ally Confirmed: -							
PID Head	ispace (pp	ள):					PSH Thick	kness (mm):							
LOW FLO	OW: PURC	SING & SA	MPLING												
Depth of	Pump Inle	t:					Fill Timer:	······································							
Pump Pre	essure Reg	gulator (ps	i):				Discharge	Timer:							
Weather	Conditions	3:					Cycle:								
Pump on	time:						Pump off time:								
Weather	Conditions	3:					· · ·								
WATER	QUALITY	PARAMET	ERS				•								
·•••	Vertical Conditions: VATER QUALITY PARAMETERS Time Volume SWL Temp EC Redox DO pH Comments (colour, turbidity, odour etc.)														
Time	(L)	(mbtoc)	(°C)	(uS/cm)	(mV)	(mg/L)	рм	Comments (colour, turbidity, daour etc.)							
								NOT SAMPLED - DRY @							
								4.52 M							
								,							
		1						······································							
								· · · · · · · · · · · · · · · · · · ·							
				1											
	Stabilisal 3 consecut	ion range: ive reading	15	+/- 3%	+/- 10mV	+/- 10%	+/- 0.05								
OTHER	COMMEN	TS'			1										
	~~	• •													

Site Addr	ess: /a	2-24 R	othschi	ld Ave,	<i>loseben</i>	ry	Job Numb	юг: <i>{22282</i>							
Client:	Sv.	ssman.	+ Co.	f		U	Date: 17/08/16								
Field Stat	ff:	A.MCA	liser				Well ID:	RH205M							
Well Loca	ation:		N bout	rdams		····	Round No								
WELL B	ACKGROL	IND		<u>()</u>											
Well Insta	allation Da	te: r	161081	16			Well Stick	un (m): () 23							
Initial We	ll Deoth (n	nhai):	7 7 7 7	1 -			Screen Inf								
Previous	Sampling	Date:	<u> </u>				Drevioue 9	$SIMI (m)$: $\frac{4}{2} O ga R t I$							
PRE DIL	oamping oce	υαις,					Flevious	5WVL (III): 4:074360							
Moll Han	d Candilia			/			DID 11								
Tote 1 Ma		11. 	ARTIC	<u>√</u>			PID Head	space (ppm):							
CMU (mt		iogi):			* 5.1	• 8 • 5	Water Me	asure Device:							
	10C):	<u></u>		<u>`</u>	<u> </u>	15	Purge Vol	= Water Column x 6 (50mm Well)							
Water Co)!umn (m):				= () - 83	m	Purge Vol	ume (L):							
PHASE S	SEPARATE	ED HYDRO	OCARBON	VS(PSH)											
Depth to	PSH (mbto	oc):	hal	1			PSH Visua	ally Confirmed:							
PID Head	lspace (pp	m):	0				PSH Thick	kness (mm):							
LOWFLO	W: PURC	SING & SA	MPLING												
Depthof	Pump Inle	t:	<	0 M =	11. A I	(<u>)</u>	Fill Timer:	10							
PumpPre	essure Red	ulator (ps		- A C	<u></u>	, 1	Discharge	Timer: FO							
Weather	Conditions		GANNER	1000	5		Cucles	(D. A.A.							
Pumpon	time:		->CHIM]	1 LEM			Dump off	LEIST.							
Wenther	Conditions	<u>.</u> .						4115.							
	OUNCER						l								
WA TER	QUALITY :	PARAME	IERS	r		r	.								
Time S	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (mg/L)	pН	Comments (colour, turbidity, odour etc.)							
4	0.5	15413	23-70	1390	98.5	1.12	5.4	prown-grey, mod typidity (4) no alo							
8	0.5	15.2.5	23.63	BZA	102.2	1.77	5.72								
12	0.5	15.2.0	23.35	1383	154.2	1.67	5.72	1							
18	0.5	15.20	23.22	1383	P. 401	1.59	5.72	Sampled							
					1			· · · · · · · · · · · · · · · · · · ·							
<u>.</u>															
					: 										
	·														
							ļ								
								······································							
				ļ											
···· 					1										
		· · · ·													
	Stabilient	ion ranger		•			<u> </u>								
	Conserved	lug readle		+/- 3%	+/- 10mV	+/- 10%	+/- 0.05								
		ive reacing	12			1									
U:3#-1€R (LOMMEN	15:													
l															
	<u> </u>														

s y

Site Addre	BSS: ,	12-24 1	zothsch	ild ave	, Roseb	erny	Job Numb	er: {22282								
Client:		SUSSM	iount (o			a de la companya de	Date: 17/08/16									
Field Staff	f:	A./	10				Well ID:	MW3								
Well Loca	ation:	welte	ern dri	rewarg			Round No:	:								
WELL BA	ACKGROU	ND		ç												
Well Insta	allation Dat	e:	201081	'14			Well Stick	up (m): - 0-2								
Initial We	ll Depth (m	ibgl):	5.0Đ	1 4.9	04		Screen Int	iervai (mbgi): 2-5								
Previous	Sampling I	Date:	28/8	12014			Previous S	SWL (m): 3.651								
PRE PUR	IGE															
Well Head	d Conditio	ત: વ	attic				PID Heads	space (ppm):								
Total Wel	I Depth (m	ibgl):	16	1 \$4 =	49		Water Mea	asure Device:								
SWL (mb	toc):		2.86	1 = 4	1.22		Purge Vol	= Water Column x 6 (50mm Well)								
Water Co	lumn (m):		}	, ھ	0.62		Purge Vol	ume (L):								
PHASES	EPARATE	ED HYDRO	CARBOI	IS(PSH)	<u> </u>											
Depth to I	PSH (mbto	c):					PSH Visua	ally Confirmed:								
PID Head	Ispace (pp		3	1411			PSH Thick	kness (mm):								
LOW FLC	DW: PURC	, SING & SA	MPLING													
Depthof	Pumn Inlei	1: 	15 7	7 C.L	(1,0 m)		Fill Timer	1/								
Pump Pre	assuro Ror	ulator (os	<u>. ເຊ</u>	1m	[+• ; • · ·]	· ···· ·	Discharge	Timer: 16								
Westhan	Conditions	anator (ps	47. Sumara	7			Cuole	7034E								
Purse			24 AF (D-2)	<u> </u>				<u>(Pivi T</u>								
Manpon	ume:						Pump off time:									
weather		5; DADAAS					<u> </u>									
WATER C		PARAME	IERS	1			1 1									
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (mg/L.)	pН	Comments (colour, turbidity, odour etc.)								
<u></u>	0.3	12.C	21.45	488	87 5	304	6.60	clean yellow-brown ho adour lowfrib								
_	0.3	13.QS	21 37	504	82.2	217	6.58	4.8								
	6.3	13.95	22.41	5/1	79.6	1.83	6.56	" increases tubedily - busines /								
· · · · · · · · · · · · · · · · · · ·	0.3	13.95	22.9	513	79.2	1.4(6.54	med turbidity, menning odow								
	:							rainpled								
				1			<u> </u>									
			<u> </u>													
<u> </u>				1			1									
				1												
			1													
		1														
<u></u>																
	<u> </u>		ļ		<u> </u>											
		ļ														
	11.26				 											
	Stabilisat	lion range;		+1. 3%	+/- 10m1/	4/. 104	4/- 0.05									
	3 consecut	ive reading	gs		Allion at a	10/0										
OT -IER	COMMEN	TS:		-	-			· · · · · · · · · · · · · · · · · · ·								

ĸ

								· · ·							
Sile Addre	88:	12-24	Rothsch	uld Ave	e, kosel	sering	Job Numb	er: 022282							
Client:	<u>A</u> . 5	vamar	1 + 60.		-	U	Date:	17/08/16							
Field Staff		A.ML	Allielez				Well ID:	RH202M							
Well Loca	tion:						Round No:	: /							
WELL BA	CKGROU	ND						t							
Well Insta	llation Dat	e: 0	6103/1	لم			Well Stick	up (m): - 30, î							
Initial Wel	Depth (m	ibal):					Screen Int	erval (mbol): 23-42							
Previous \$	Sampling (Date:					Previous S	SWL (m):							
PRE PUR	GE														
Well Hear	i Condition		antie .	/			PID Heads	space (ppm);							
Total Well	Denth (m	hal):	it 2 .		4-		Water Me	asure Device:							
SWI (mb)	loc):	<u>~3.</u> ,,		A.1	<u></u> A		Purge Vol	= Water Column x 6 (50mm Well)							
WaterCo	umn (m):		14-1-41	~ 0	: I	····	Purge Vol								
PHASE S	EPARATE		CARBON	JS(PSH)	<u>>.</u>		i dige voi								
Depth to F				·•(· •(i)			PSH View	ally Confirmed:							
PID Head	space (no	<u></u>	·····'/	. H			DSH Thial								
								areas futures							
Denth of I	Dumo Intel	- 12 A		2											
	amp me	- 10.4-	<u>18 = 3.9</u>	3 W3			Fin Timer:								
Weeter	Source Re(juiator (ps	1 <u>1</u>	0			Discharge								
oveather (•	Innut	·			Cycle:	CPM T							
Pumpon time: Pump off time:															
vveamer (
WA TER (Veather Conditions: VATER QUALITY PARAMETERS														
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (uS/cm)	Redox (mV)	00 (mg/L)	рН	Comments (colour, turbidity, odour etc.)							
	03	H 3	23.47	415	81.8	239	6.43	brown mod fribidity, no odours							
	0.3	14.3	22.41	414	23.8	201	638	A							
	0.3	14 35	2229	417	\$4.1	201	6.37	÷.							
	33	14 35	5 Centri	pled				ef							
								me habidit u							
								Û							
				 	1										
								· · · · · · · · · · · · · · · · · · ·							
	[1											
		1					1	······································							
	1	<u> </u>	1	1			1								
	Stabilisat	ion range;	1	+/- 3%	+/- 10mV	+/- 10%	+/- 0.05								
	consecut	ive reading	9 s												

WATER SAMPLING FIELD SHEET

Site Address: 12 - 24 Rothschild Ave. Job Number: £2228 2 Client: Sussmant (o Date: 17/03/16 Field Staff: A MCAILICLY Sampling Location ID BH 203M Well Location: Central 1 moon Round No: MEDIUM MGroundwater □Surface Water ☐Stormwater DOther: SAMPLING POINT INFO Stickup (m): Well Installation Date: 06/08/16 0.1 (+ above ground - below ground) 6.00 Initial Well Depth (mbgl): Screen Interval (mBTOC): 3-6 MAGL Previous Sampling Date: Previous SWL (mBTOC): PID READINGS PID Headspace (ppm): PID Background (ppm): PID Breathing Space (ppm): PRE PURGE 18.5 (1 = 5.638 Total Well Depth (mbgl): Well Head Condition: 🖌 5.A.11 = 4.69 0 948 SWL (mbtoc): Water Column (m): PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mbtoc): PSH Visually Confirmed (Bailer): WIL Wit PSH Thickness (mm): PURGEAND SAMPLE Sampling Method 28ladder DPeristallic DOther: Submersible Depth of Pump Inlet: 17.4 (+= Fill Timer: 5.3m ŧ٥ Pump Pressure Regulator (psi): Discharge Timer: 10 20 Weather Conditions: summy i low wind Cycle: (PM4 Pump on time: Pump off time: WAT ERQUALITY PARAMETERS Probe Make and Model: Bump Test Date and Time: Volume SWL Temp EC Redox DO рH Time Comments (colour, turbidity, odour etc.) (uS/cm) (units) (L) (mbtoc) (°C) (mV) (mg/L) 6.64provin mod. turnidity tss no odour <u>0:</u>3 15 35 74.25 526 92.7 2.51 Ĩ 6.17 0.3 15.30 24.18 537 81.4 2.67 Ħ 0.3 6.68 15.25 24.16 528 80.7 1.81 0.3 15.25 24.89 79.9 6.71 u 526 1.26 0.3 Sour ored Sublisation range: ±0.2°C ±3% ±20mV ±10% ±0.2 3 misecutive readings OTHER COMMENTS/OBSERVATIONS: SIG NATURE:

Environmental Investigations Australia Pty Ltd Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

> ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - EI PID02 🗹 OR 592-901345 - EI PID03 🗌

Instrument Conditions: ______

Calibration gas species: Isobutylene.

Calibration gas concentration: 100 ppm

Gas bottle number: ____02____

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

ppm at <u>[00</u> ppm span setting (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: 250 psi (if reading is <250 psi, notify Equipment Manager to arrange new gas bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed: 8 6 Date: Time: _ Fam

APPENDIX D

Chain of Custody and Sample Receipt Forms

Coc beceived Shills District Shills District

Sheet	of	2			Sam	nple N	/atri>	(Ana	lysis					-		Comments
Site: 12-24	Roths	child A	טצו	Project No:	1											ge)	ictivity)							HM <u>A</u> Arsenic Cadmium
Roselver	j			EILL82			nt, etc.	PAHs	AHs							xchan	condu							Chromium
Laboratory:	SGS Aus Unit 16, ALEXAN P: 02 859	stralia 33 Maddox 3 IDRIA NSW 94 0400 F: 0	Street, 2015 2 8594 04	99			(i.e. Fibro, Pai	TRH/BTEX/	FRH/BTEX/F	IRH/BTEX	TEX/Lead	тех			os	EC (cation e	C (electrical	AS .	e 63		PAHs	HM A	HMB	Lead Mercury Nickel Zinc
Sample	Laboratory	Container	Sa	ampling	TER	_	HERS	MA/ CP/O	MAN	MAN	SH/B	SH/B	AHs	ocs	sbest	H/CF	H/E	POC/	New		CLP	CLP	CLP	LINAB
D	ID	Туре	Date	Time	WA	SO /	EO	ĨŎ	Ĩ	Ĩ	=	F T	à	>	A	ā	ā	- CO	-7					Arsenic
34102.01-0	21	5,216	6/0/16	AM		1		V						1			<u></u>		$\overline{\mathbf{V}}$					Cadmium
-05-06		1	<u> </u>		<u> </u>	1																		Lead Mercury
_ 0.8-0.9	2				<u> </u>				~			ļ												Nickel
1-18-19																			- /					
BH106, 0.35-0.4	5 3							1						1					1			-		LABORATORY
1-04-10																		<u> </u>						TURNAROUNE
-1 5-1.4	4								1													-	-	standard
1-19-20														<u> </u>								-	-	[d Hours
OH207.0.3-6.4	5							1						1					\checkmark					[8 Hours
1 -0.3-04	6								\checkmark															2 Hours
12-13																						_		[miner
1/ -19-20				1		V																- 2		
Investigator: I	attest tha	it these samp	oles were	collected in a	accord	ance	Sam	pler's Na	me (El):			Rece	ived by	(SGS):	6 								
v	with standard El field sampling procedures.							1/B	Y												1×	112		
Sampler's Co	mmen	SGS Alex	andria E	nvironment	al		En	int n MCiV	wel	h	elde	45	Prin	nt 1	Om	in	1			oi	a	ÎC	tr	alia
							Sig	nature Na al	Do	4			Sigr	ature 2	In	-	T			Contan	nination	Réme	LI (Geotechnical
Container Type	d onic		EC74			Date 8/8/16 Suite 6.01, 55 Miller Street, PYR							MONT NSW 2009											
S= solvent wash P= natural HDPI	ed, acic E plastic		IMPORTANT: lab@eiaustral								5.r													
VC= glass vial.	feflon S					Plea	se e-m	ail lab	orator	y resu	ults to:	lab@	Deiau	ustral	ia.co	m.at	1						COC JULY 2016 FORM v.3 - SI	

Sheet 2	of	3	Sam	iple M	Matrix									Ana	lysis								Comments		
Site: 12 - 24 Roseber	Roche	schild A	ir P	roject No: 11.1.3 L			. etc.)	AHs tos	VHs							change)	onductivity)								HM A Arsenic Cadmium Chromium
Laboratory:	SGS Aus Unit 16, ALEXAN P: 02 859	stralia 33 Maddox S IDRIA NSW 3 94 0400 F: 03	Street, 2015 2 8594 0499				(i.e. Fibro, Paint	TRH/BTEX/P	IRH/BTEX/P/	IRH/BTEX	TEX/Lead	TEX			so	EC (cation exc	C (electrical co	St		ie b		PAHs	≜ MH	HM ^B	Copper Lead Mercury Nickel Zinc
Sample	Laboratory	Container	Samp	aling	TER	_	HERS	M A /	MAN	MAN	SH/B.	SH/B	AHs	ocs	sbest	H/CE	H/EC	000	STE)	okon		CLP	CLP	CLP	
ID		Туре	Date	Time	WA	sol	ō	Ξŏ	Ĩ	Ŧ	Ĕ	1	à	5	Ä	đ	đ	ŝ		1				H	HM ≌ Arsenic
BH208-0	7	5,2LB	6/1/16	Aм		1		\bigvee					<u> </u>	V						V					Cadmium Chromium
-07-0.	8	i		1					\checkmark																Lead
1 -1.2-13														ļ											Nickel
24209-01-62	9							\checkmark																	
1-07-09	10								\checkmark													-			
CH110_82-04	1							\checkmark						1						\checkmark					AROUND
1 _0.7-0.3	12								\checkmark					1											andard
04711-05-04	13	V						\checkmark						\bigvee						\checkmark					* Hours
6.0100	14	5			,	V				1															Hours
mi (%)	15	J								1									,						Hours
CARIDO	16	VC				1													V,						her
Cars in a	17	UL			-														\checkmark						
	attest the	t these same	les were col	 lected in a	ccord:	ance	Samp	ler's Na	me (El):			Rece	ived by	(SGS):	L	L			la managada					
N N N	with standard EI field sampling procedures.																				6	K			
Sampler's Co	omments:			ana ann an tao			Prin Eng Sigr	nt Mino- nature	16	Jacks	lens		Prit Sign	nl nature	Da	200	17	0		E			S	tra	alia
Container Type	e: ned. acid rins	sed.Teflon seal	ed, glass jaR				Date B18/16 Suite 6.01, 55 Miller Street, PYR Date B18/16 Suite 6.01, 55 Miller Street, PYR Pn: 9516 0722									, PYRI 0722	MONT NSW 2009								
P= natural HDP VC= glass vial, 7LB = Zin-Lock	E plastic bot Teflon Septi Bao		IMP Pleas	ORT.	ANT ail lab	: orator	y resu	ilts to:	lab@	Deiau	Istral	ia.co	m.au	1			lab	@eia	USM		000 ary 2016 FORM v.3 - \$68				

- CLIENT DETAIL	S	LABORATORY DETA	AILS	
Contact	Emmanuel Woelders	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	Emmanuel.Woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22282 - 12-24 Rothschild Ave, Rosebery	Samples Received	Mon 8/8/2016	
Order Number	E22282	Report Due	Mon 15/8/2016	
Samples	17	SGS Reference	SE155671	

_ SUBMISSION DETAILS .

This is to confirm that 17 samples were received on Monday 8/8/2016. Results are expected to be ready by Monday 15/8/2016. Please quote SGS reference SE155671 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 16 Soil, 1 Water 8/8/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 8.5°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

7 soil samples have been placed on hold.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22282 - 12-24 Rothschild Ave, Rosebery

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Phenolics in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH202_0.1-0.2	28	13	26	11	1	10	79	8
002	BH202_0.8-0.9	-	-	26	-	-	10	12	8
003	BH206_0.35-0.45	28	13	26	11	1	10	79	8
004	BH206_1.3-1.4	-	-	26	-	-	10	12	8
005	BH207_0.3-0.4	28	13	26	11	1	10	79	8
006	BH207_0.8-0.9	-	-	26	-	-	10	12	8
007	BH208_0.1-0.2	28	13	26	11	1	10	79	8
008	BH208_0.7-0.8	-	-	26	-	-	10	12	8
009	BH209_0.1-0.2	28	13	26	11	1	10	79	8
010	BH209_0.7-0.8	-	-	26	-	-	10	12	8
011	BH210_0.2-0.4	28	13	26	11	1	10	79	8
012	BH210_0.7-0.8	-	-	26	-	-	10	12	8
013	BH211_0.3-0.4	28	13	26	11	1	10	79	8
014	QD100	-	-	-	-	-	10	12	8
016	QTB100	-	-	-	-	-	-	12	-
017	QTS100	-	-	-	-	-	-	12	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

__ CLIENT DETAILS _

Client Environmental Investigations

SUMMARY OF ANALYSIS

Project E22282 - 12-24 Rothschild Ave, Rosebery

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	Total Recoverable Metals in Soil/Waste
001	BH202_0.1-0.2	2	1	1	7
002	BH202_0.8-0.9	-	1	1	7
003	BH206_0.35-0.45	2	1	1	7
004	BH206_1.3-1.4	-	1	1	7
005	BH207_0.3-0.4	2	1	1	7
006	BH207_0.8-0.9	-	1	1	7
007	BH208_0.1-0.2	2	1	1	7
008	BH208_0.7-0.8	-	1	1	7
009	BH209_0.1-0.2	2	1	1	7
010	BH209_0.7-0.8	-	1	1	7
011	BH210_0.2-0.4	2	1	1	7
012	BH210_0.7-0.8	-	1	1	7
013	BH211_0.3-0.4	2	1	1	7
014	QD100	-	1	1	7
016	QTB100	-	-	1	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

___ CLIENT DETAILS _

Client Environmental Investigations

Project E22282 - 12-24 Rothschild Ave, Rosebery

- SUMMARY	OF ANALYSIS					
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
015	QR100	1	7	9	12	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Comments	HM ^A Arsenic	Cadmium Chromium Copper	Lead Mercury Nickel Zinc	BI MH	Arsenic	Cadmium Chromium	Mercury	Nickel			AROUND	1 inndard	t Hours	- Hours	Hours	her				COLO Gentechnical RMONT NSW 2009	22	COC July 2016 FORM v.1 - 565
			a MH d	LCLF	-						_						_			ediation et. PY	16 07	
			[∆] MH ¢	ссгь	L		_										4		"	C Stree	n: 95 elausi	
			ehaq (LCLP	L														X	Mille	Plane (
									Envirolet Station St.	Chatswood NSW 2067 Ph: (02) 9910 6200	10136	ed: 15:30	y: D-F.	encepack acuBroken/None	Brokenskone					Contam Contam		
			SA	POC	s				1	5	19	Receiv	d bevi	ing: lo	inaciana.		-					.au
alysis	vity)	couqueti	(electrical	Э/Н	lq	_	-		(1 dol	Date	Rece	000	sounty	-	_		Da	5	0	COM
Ana	(әбиецэх	EC (cation e	9/Н	d	_		_		10		<u>.</u>	E L	alle Alle	3 18		_	S):	4	A	S	ralia.
	2		soj	səqs	A			-		-							_	by (SG	Runa	all with	8/0	aust
				soo						-	-		-					ceived	Da	P C C	0	000
			2	sHA	/d					-			-					Re			-	o: lat
			XƏT	8/H/8	4T							-								れ		sults t
			DE9J/X3T	3H\B	TF						_		-		-					sela		ory re
			XJT8/H97	JAN	NH	>						_	_					:(13		3	Ē	aborat
	1	eHA	9\ХЭТ8\НЯТ	VAN	ИН													Jame (F	34	20 mil	6 TANI	mail le
		eda aote	P/PCB/Asbe P/PCB/Asbe	N A N	NH													pier's N	N	int mature	200	Se e-l
atrix		(.ələ .lr	(i.e. Fibro, Pail	SRE	410													Sam	12	a (L S R		Plea
ole M				٦	lios	>								1								
Sam				สลา	IAW													-	accord			
	oject No:	18112		Buj	Time	AM												li stad in	liected in cedures.			
	La La	-	967	Samp	Date	6 18/16													les were co mpling proc		d, glass jaR	
	ild Aut		services Street, OD NSW 2(6200	Container	Type	10													these samp d El field sa		d,Teflon seale	
of 1	Rothic	5	Envirolab 2 Ashley 3 HATSWO 3 02 9910	aboratory	Ω														attest that ith standar	mments:	: ed, acid rinse ed, acid rinse	E plastic bottl fefton Septur
Shoot 1	Site: 12-24	Roselan	aboratory. E	Samle	and a	Grino													Investigator: I w	Sampler's Co	Container Type J= solvent wash S= solvent wash	P= natural HDPE VC= glass vial, 7

Client Details	
Client	El Australia
Attention	Benjamin Yuan

Sample Login Details	
Your Reference	E22282, Rosebery
Envirolab Reference	151436
Date Sample Received	05/08/2016
Date Instructions Received	08/08/2016
Date Results Expected to be Reported	15/08/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on receipt (°C)	8
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(CG-	svTRH (C10-C40) in	Acid Extractable
	C10)/BTEXN in Soil	Soil	metals in soil
QT100	\checkmark	\checkmark	\checkmark

					1.											Analy	ysis						-+	
eet /	of				Sam	ple N	atrix		-	T		T	T	T			()							HMA
	e ll cel	IL AVA		Project No	:											(ə	tivity							Cadmium
12-24	Kothsin	ala mit	1	02			6	\$	0							nang	nduc							Chromium
Ros	eberny			6220			int, et	PAH	PAH							excl	al co							Lead
ooratory:	SGS Austr	alia	turnet				ro, Pa	ITEX	TEX	TEX	ead					ation	actric		S		-sr	A	B	Mercury Nickel
	Unit 16, 33 ALEXAND P: 02 8594	RIA NSW 2 0400 F: 02	015 8594 04	199			s (i.e. Fib	/TRH/B	/TRH/B	/TRH/B	BTEXIL	BTEX	5	S	estos	CEC (EC (el	DCAS	lovial		SLP PA	CLP HN	CLP HN	ZinC
	T		S	ampling	TER	F	THERS	MA AND	AMH	AMA	TRH/		PAH	VOC	Asb	Hd /	Hd	sPC	10		T	F	F	HM = Arsenic
Sample ID	Laboratory ID	Type	Date	Time	a M	so	0	IU	1	-				×			-	-	x			-		Cadmium
11011			1710	8	×	+	-	-	X		-	1		X		-		-	×			-	1	Lead
412			u		*	+	-	-	×	-	-	-	-	V	\uparrow	1			×					Nickel
1112	3		<u>ic</u>		X		-	1-	X		+	+	+	X	+	1	1	1	X					
CMIN	2		u		X			1	X		-	+-	+	V	+	+	+	1	X					
102 M	2		es .		X	(_	-	X	-	+	+	-	N	+	+	+	1	x					TURNAROUN
20514	L.		ú			K		1	X	1	+	+	+-	X	+	+	+	1				T		Standard
20514	- C		et		5	K			-	X	-	+	+-	+	+	-	SGS	Alexa	ndria EHS					24 Hours
EDQW1			1						\bot	_	+	X			+-	-								48 Hours
GWTB1	6		a									X		+	+	-						1		72 Hours
GWPTS:	1 /	+	((X				X	4	+			+	-	SE	156	129 C	-2016				Other
GWORI	8				-								_		+		Rec	eivea	10 - Aug	-2010	T	1		
			+		-										1 54 (5	GS):			En	viro	nn	nei	nta	
					d in ac	corda	nce	ampler's	s Name	e (EI):				eceived					In	ve	st	iq	at	ions 🔍
Investigat	or: I attest t with star	hat these sandard EI fiel	amples w d samplii	ng procedu	res.			Air	Nee	MCA	llist-	V		Print										Austra
Sampler	s Comment	s:						Print	P	4410	1	-			5	See	9		Con	tamina	ation	Re	medi	ation Geotechn
Sampler	0.000						t	Signat	urə	17/0	18/1	6		Signat	ure of	· 4	suh-	-1	Suit	e 6.01	, 55	Mille	r Stre	et
							-+	Date						Date	051	16	0	2-3	SO PYF	RMON	TNS	W 2	009	
Containe J= solven	r Type: t washed, acic	rinsed, Teflon	sealed, gl	ass jaR			ł	MPC	RT4	NT:								-	Ph:	95	etrali	a co	m.au	COC July 2014 FOR
S= solver P= natura	l washed, aci I HDPE plasti	c bottle	9.8 M.C.					Please	e-ma	il labo	ratory	result	ts to:	lab@	eiau	strali	a.col	n.au	lab	welau	Juan	4.00		

CLIENT DETAIL	S	LABORATORY DETA	AILS	
Contact	Aimee McAllister	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	Aimee.Mcallister@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22282 - 12-24 Rothschild Ave Rosebery	Samples Received	Thu 18/8/2016	
Order Number	E22282	Report Due	Thu 25/8/2016	
Samples	8	SGS Reference	SE156129	

_ SUBMISSION DETAILS .

This is to confirm that 8 samples were received on Thursday 18/8/2016. Results are expected to be ready by Thursday 25/8/2016. Please quote SGS reference SE156129 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 8 Waters 18/8/2016 Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 14.2°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

__ CLIENT DETAILS _

Client Environmental Investigations

Project E22282 - 12-24 Rothschild Ave Rosebery

- SUI	MMARY	OF ANALYSIS							
	No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
	001	MW3	1	22	1	7	9	79	8
	002	202M	1	22	1	7	9	79	8
	003	203M	1	22	1	7	9	79	8
	004	205M	1	22	1	7	9	79	8
	005	GWQD1	1	-	-	7	9	79	8
	006	GWTB1	-	-	-	-	-	12	-
	007	GWQTS1	-	-	-	-	-	12	-
	008	GWQR1	1	-	-	7	9	12	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Container Type: J= solvent washed, acid rinsed,Teflon sealed, glass jaR S= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag		Sampler's Comments:		with standard El field sampling procedures	Investigator: I attest that these samples were collected											GWQT1 () 17/08	ID ID Type Date Tim	Sample Laboratory Container. Sampling	CHATSWOOD NSW 2067 P: 02 9910 6200	Laboratory: Envirolab Services	Roseberry wast	Site: 12-24 Rothschild Ave, Project	Sheet of
					in accordance s											\times	र्ष WATER					No:	Samp
7 -													_				SOIL					ole Ma	
MPOF lease	Date	Signatu	Print	Ain	ampler's	_	_	-				-	-	_			OTHERS (i.e. Fibro, Paint, etc.) HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos HM ^A /TRH/BTEX/PAHs HM ^A /TRH/BTEX/PAHs TRH/BTEX/Lead						ıtrix
P-mail la		I I I	Ł	nee N	s Name (EI):		-		-			1		_									
IT: aborato		91/80/41	Al-	JCAILISAN												\times							
bry rest																							
ults to:																	TR	H/B1	3TEX				
lab@	Date	Signa	Print	P. Ray	Received by (SGS):												PA	Hs					
eiaus	ĪŅ	100 ture	PR				<u> </u>							_			VOCs Asbestos						
stralia	5	213											_	_	_								
L.COTT		010				_					-	-	_				pH	/ CE	C (catio	n ex	change)		Analy
I.au							8 6	Te	Tin	10				-			pH	/ EC	(electric	cal c	onductivit	y)	Sis
	0						curity.	mp: Colved	ne Rece	DINO.	(1		_				sP	OCA	S	-		-	
1.4	uite 6						ntacua	- A	ived:	17	Chat	E	-	-						-		-	
157	.01, 5	Contarr	D.				roken/h	a la	NA	R	1: (02) 9	virolab			-		-			-			
ab@eiaustr					5	lone	4 Y	2016	S	15W 200	Service Ishley S	-				тс		AHe		-	-		
								0		**	3 2 6					тс		HMA					
diation 1 Geotechnical et, PYRMONT NSW 2009 16 0722 ralia.com.au coc.uty 2016 FORW v.3 - SGS						_										1	тс	LP H	IM ^B	1			
							Other	T2 Hours	48 Hours	24 Hours	X Standard	LABORATORY		Mercury	Lead	Cadmium	HMB	Zinc	Nickel	Copper	Arsenic Cadmium Chromium	HMA	Comments

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	A McAllister

Sample Login Details	
Your Reference	E22282, Rosebery
Envirolab Reference	152056
Date Sample Received	18/08/2016
Date Instructions Received	18/08/2016
Date Results Expected to be Reported	25/08/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on receipt (°C)	9.7
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(CG- C10)/BTEXN in Water	svTRH (C10-C40) in Water	HM in water - dissolved
GWQT1	\checkmark	\checkmark	\checkmark

APPENDIX E Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	_ LABORATORY DETAILS				
Contact Client Address	Emmanuel Woelders Environmental Investigations Suite 6.01, 55 Miller Street NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015				
Telephone	02 9516 0722	Telephone	+61 2 8594 0400				
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499				
Email	Emmanuel.Woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com				
Project	E22282 - 12-24 Rothschild Ave, Rosebery	SGS Reference	SE155671 R0				
Order Number	E22282	Date Received	8/8/2016				
Samples	17	Date Reported	15/8/2016				

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kinty

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

Yusuf Kuthpudin Asbestos Analyst

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

15/08/2016

SE155671 R0

VOC's in Soil [AN433] Tested: 10/8/2016

			BH202_0.1-0.2	BH202_0.8-0.9	BH206_0.35-0.45	BH206_1.3-1.4	BH207_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
DADAMETED	ЦОМ		6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
Benzene	ma/ka	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	ma/ka	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	ma/ka	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	ma/ka	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	-	<1	-	<1
Chloromethane	mg/kg	1	<1	-	<1	-	<1
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Bromomethane	mg/kg	1	<1	-	<1	-	<1
Chloroethane	mg/kg	1	<1	-	<1	-	<1
Trichlorofluoromethane	mg/kg	1	<1	-	<1	-	<1
Acetone (2-propanone)	mg/kg	10	<10	-	<10	-	<10
lodomethane	mg/kg	5	<5	-	<5	-	<5
1,1-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Acrylonitrile	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	-	<0.5	-	<0.5
Allyl chloride	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Carbon disulfide	mg/kg	0.5	<0.5	-	<0.5	-	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1-dichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Vinyl acetate	mg/kg	10	<10	-	<10	-	<10
MEK (2-butanone)	mg/kg	10	<10	-	<10	-	<10
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Bromochloromethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Chloroform	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
2,2-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2-dichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1,1-trichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Carbon tetrachloride	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Dibromomethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
2-nitropropane	mg/kg	10	<10	-	<10	-	<10
Bromodichloromethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	-	<1	-	<1
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1,2-trichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,3-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Chlorodibromomethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
2-hexanone (MBK)	mg/kg	5	<5	-	<5	-	<5
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Chlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Bromoform	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
cis-1,4-dichloro-2-butene	mg/kg	1	<1	-	<1	-	<1
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2,3-trichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	<1	-	<1	-	<1

SE155671 R0

			BH202_0.1-0.2	BH202_0.8-0.9	BH206_0.35-0.45	BH206_1.3-1.4	BH207_0.3-0.4
			SOIL - 6/8/2016	SOIL - 6/8/2016	SOIL - 6/8/2016	SOIL - 6/8/2016	SOIL - 6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.002	SE155671.003	SE155671.004	SE155671.005
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Bromobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
n-propylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
2-chlorotoluene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
4-chlorotoluene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
tert-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
sec-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,3-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,4-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
p-isopropyltoluene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
n-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Hexachlorobutadiene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	<0.1
Total VOC*	mg/kg	24	-	-	-	-	-

SE155671 R0

			BH207_0.8-0.9	BH208_0.1-0.2	BH208_0.7-0.8	BH209_0.1-0.2	BH209_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	6/8/2016 SE155671 006	6/8/2016 SE155671.007	6/8/2016 SE155671 008	6/8/2016 SE155671.009	6/8/2016 SE155671 010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	<1	-	<1	-
Chloromethane	mg/kg	1	-	<1	-	<1	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromomethane	mg/kg	1	-	<1	-	<1	-
Chloroethane	mg/kg	1	-	<1	-	<1	-
Trichlorofluoromethane	mg/kg	1	-	<1	-	<1	-
Acetone (2-propanone)	mg/kg	10	-	<10	-	<10	-
Iodomethane	mg/kg	5	-	<5	-	<5	-
1,1-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Acrylonitrile	mg/kg	0.1	-	<0.1	-	<0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	<0.5	-	<0.5	-
Allyl chloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon disulfide	mg/kg	0.5	-	<0.5	-	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Vinyl acetate	mg/kg	10	-	<10	-	<10	-
MEK (2-butanone)	mg/kg	10	-	<10	-	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromochloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chloroform	mg/kg	0.1	-	<0.1	-	<0.1	-
2,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
	mg/kg	0.1	-	<0.1	-	<0.1	-
	mg/kg	0.1	-	<0.1	-	<0.1	-
1.2-dichloropropage	mg/kg	0.1	-	<0.1		<0.1	-
	mg/kg	0.1	-	<0.1		<0.1	-
2-nitropropane	ma/ka	10	_	<10	-	<10	_
Bromodichloromethane	ma/ka	0.1		<0.1	<u> </u>	<0.1	
MIBK (4-methyl-2-pentanone)	ma/ka	1	_	<1		<1	_
cis-1,3-dichloropropene	mg/ka	0.1	_	<0.1		<0.1	_
trans-1,3-dichloropropene	mg/kg	0.1	_	<0.1	_	<0.1	-
1,1,2-trichloroethane	mg/kg	0.1	_	<0.1	_	<0.1	_
1,3-dichloropropane	mg/kg	0.1	-	<0.1	_	<0.1	-
Chlorodibromomethane	mg/kg	0.1	-	<0.1	-	<0.1	-
2-hexanone (MBK)	mg/kg	5	-	<5	_	<5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-	<0.1	-	<0.1	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromoform	mg/kg	0.1	-	<0.1	-	<0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	<1	-	<1	-

SE155671 R0

			BH207_0.8-0.9	BH208_0.1-0.2	BH208_0.7-0.8	BH209_0.1-0.2	BH209_0.7-0.8
			SOIL - 6/8/2016	SOIL - 6/8/2016	SOIL - 6/8/2016	SOIL - 6/8/2016	SOIL - 6/8/2016
PARAMEIER	UOM	LOR	SE155671.006	SE155671.007	SE155671.008	SE155671.009	SE155671.010
Isopropylbenzene (Cumene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-propylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
2-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
4-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
tert-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
sec-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
p-isopropyltoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Total VOC*	mg/kg	24	-	-	-	-	-

SE155671 R0

			BH210_0.2-0.4	BH210_0.7-0.8	BH211_0.3-0.4	QD100	QTB100
			SOIL	SOIL	SOIL	SOIL	SOIL
DADAMETED	ЦОМ		6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
Benzene	ma/ka	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	-	<1	-	-
Chloromethane	mg/kg	1	<1	-	<1	-	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	-	<0.1	-	-
Bromomethane	mg/kg	1	<1	_	<1	-	_
Chloroethane	mg/kg	1	<1	-	<1	-	-
Trichlorofluoromethane	mg/kg	1	<1	-	<1	-	-
Acetone (2-propanone)	mg/kg	10	<10	-	<10	-	-
lodomethane	mg/kg	5	<5	-	<5	-	-
1,1-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	-
Acrylonitrile	mg/kg	0.1	<0.1	-	<0.1	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	-	<0.5	-	-
Allyl chloride	mg/kg	0.1	<0.1	-	<0.1	-	-
Carbon disulfide	mg/kg	0.5	<0.5	-	<0.5	-	-
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	-	<0.1	-	-
1,1-dichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	-
Vinyl acetate	mg/kg	10	<10	-	<10	-	-
MEK (2-butanone)	mg/kg	10	<10	-	<10	-	-
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	-	<0.1	-	-
Bromochloromethane	mg/kg	0.1	<0.1	-	<0.1	-	-
Chloroform	mg/kg	0.1	<0.1	-	<0.1	-	-
2,2-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	-
1,2-dichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	-
1,1,1-trichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	-
1,1-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	-
Carbon tetrachloride	mg/kg	0.1	<0.1	-	<0.1	-	-
Dibromomethane	mg/kg	0.1	<0.1	-	<0.1	-	-
1,2-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	-	<0.1	-	-
2-nitropropane	mg/kg	10	<10	-	<10	-	-
Bromodichloromethane	mg/kg	0.1	<0.1	-	<0.1	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	-	<1	-	-
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	-
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	-	<0.1	-	-
1,1,2-trichloroethane	mg/kg	0.1	<0.1	-	<0.1	-	-
1,3-dichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	-
Chlorodibromomethane	mg/kg	0.1	<0.1	-	<0.1	-	-
2-hexanone (MBK)	mg/kg	5	<5	-	<5	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	-	<0.1	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	-	<0.1	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	-	<0.1	-	-
Chlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
Bromoform	mg/kg	0.1	<0.1	-	<0.1	-	-
cis-1,4-dichloro-2-butene	mg/kg	1	<1	-	<1	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	-	<0.1	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	-	<0.1	-	-
1,2,3-trichloropropane	mg/kg	0.1	<0.1	-	<0.1	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	<1	-	<1	-	-

SE155671 R0

			BH210_0.2-0.4	BH210_0.7-0.8	BH211_0.3-0.4	QD100	QTB100
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	6/8/2016 SE155671.011	6/8/2016 SE155671.012	6/8/2016 SE155671.013	6/8/2016 SE155671.014	6/8/2016 SE155671.016
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	-	<0.1	-	-
Bromobenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
n-propylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
2-chlorotoluene	mg/kg	0.1	<0.1	-	<0.1	-	-
4-chlorotoluene	mg/kg	0.1	<0.1	-	<0.1	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
tert-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
sec-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
1,3-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
1,4-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
p-isopropyltoluene	mg/kg	0.1	<0.1	-	<0.1	-	-
1,2-dichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
n-butylbenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	-	<0.1	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	<0.1	-	<0.1	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	-	<0.1	-	-
Total VOC*	mg/kg	24	-	-	-	-	-

			QTS100
			SOIL
PARAMETER	ЦОМ	LOR	6/8/2016 SE155671 017
Benzene	mg/kg	0.1	[84%]
Toluene	mg/kg	0.1	[87%]
Ethylbenzene	mg/kg	0.1	[85%]
m/p-xylene	mg/kg	0.2	[83%]
o-xylene	mg/kg	0.1	[90%]
Total Xylenes*	mg/kg	0.3	-
Total BTEX	mg/kg	0.6	-
Naphthalene	mg/kg	0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-
Chloromethane	mg/kg	1	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-
Bromomethane	mg/kg	1	-
Chloroethane	mg/kg	1	-
Trichlorofluoromethane	mg/kg	1	-
Acetone (2-propanone)	mg/kg	10	-
lodomethane	mg/kg	5	-
1,1-dichloroethene	mg/kg	0.1	_
Acrylonitrile	mg/kg	0.1	_
Dichloromethane (Methylene chloride)	mg/kg	0.5	_
Allvl chloride	ma/ka	0.1	-
Carbon disulfide	ma/ka	0.5	-
trans-1.2-dichloroethene	ma/ka	0.1	
MtBE (Methyl-tert-butyl ether)	ma/ka	0.1	
1.1-dichloroethane	ma/ka	0.1	-
Vinyl acetate	ma/ka	10	
MEK (2-butanone)	ma/ka	10	_
cis-1.2-dichloroethene	ma/ka	0.1	
Bromochloromethane	ma/ka	0.1	
Chloroform	ma/ka	0.1	
2.2-dichloropropane	ma/ka	0.1	-
1.2-dichloroethane	ma/ka	0.1	
1.1.1-trichloroethane	ma/ka	0.1	-
1.1-dichloropropene	ma/ka	0.1	-
Carbon tetrachloride	ma/ka	0.1	-
Dibromomethane	ma/ka	0.1	
1,2-dichloropropane	mg/kg	0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	_
2-nitropropane	mg/kg	10	_
Bromodichloromethane	mg/kg	0.1	_
MIBK (4-methyl-2-pentanone)	mg/kg	1	-
cis-1,3-dichloropropene	mg/kg	0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	-
1,1,2-trichloroethane	mg/kg	0.1	-
1,3-dichloropropane	mg/kg	0.1	-
Chlorodibromomethane	mg/kg	0.1	-
2-hexanone (MBK)	mg/kg	5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-
Chlorobenzene	mg/kg	0.1	-
Bromoform	mg/kg	0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	-
Styrene (Vinyl benzene)	mg/kg	0.1	-
1,1,2,2-tetrachloroethane	mg/ka	0.1	-
1,2,3-trichloropropane	mg/kg	0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	-

SE155671 R0

			QTS100
			SOIL
			- 6/8/2016
PARAMETER	UOM	LOR	SE155671.017
Isopropylbenzene (Cumene)	mg/kg	0.1	-
Bromobenzene	mg/kg	0.1	-
n-propylbenzene	mg/kg	0.1	-
2-chlorotoluene	mg/kg	0.1	-
4-chlorotoluene	mg/kg	0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	-
tert-butylbenzene	mg/kg	0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	-
sec-butylbenzene	mg/kg	0.1	-
1,3-dichlorobenzene	mg/kg	0.1	-
1,4-dichlorobenzene	mg/kg	0.1	-
p-isopropyltoluene	mg/kg	0.1	-
1,2-dichlorobenzene	mg/kg	0.1	-
n-butylbenzene	mg/kg	0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	-
Hexachlorobutadiene	mg/kg	0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	-
Total VOC*	mg/kg	24	-

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 10/8/2016

			BH202_0.1-0.2	BH202_0.8-0.9	BH206_0.35-0.45	BH206_1.3-1.4	BH207_0.3-0.4
			201	2011	201	2011	201
			- SUIL		- SOIL	- SUIL	- 5012
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.002	SE155671.003	SE155671.004	SE155671.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH207_0.8-0.9	BH208_0.1-0.2	BH208_0.7-0.8	BH209_0.1-0.2	BH209_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.006	SE155671.007	SE155671.008	SE155671.009	SE155671.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH210_0.2-0.4	BH210_0.7-0.8	BH211_0.3-0.4	QD100
			SOIL	SOIL	SOIL	SOIL
						-
			6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.012	SE155671.013	SE155671.014
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN4

403] Tested: 10	0/8/2016
-----------------	----------

			BH202_0.1-0.2	BH202_0.8-0.9	BH206_0.35-0.45	BH206_1.3-1.4	BH207_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.002	SE155671.003	SE155671.004	SE155671.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH207_0.8-0.9	BH208_0.1-0.2	BH208_0.7-0.8	BH209_0.1-0.2	BH209_0.7-0.8
PARAMETER	иом	LOR	SOIL - 6/8/2016 SE155671.006	SOIL - 6/8/2016 SE155671.007	SOIL - 6/8/2016 SE155671.008	SOIL - 6/8/2016 SE155671.009	SOIL - 6/8/2016 SE155671.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH210_0.2-0.4	BH210_0.7-0.8	BH211_0.3-0.4	QD100
PARAMETER	UOM	LOR	SOIL - 6/8/2016 SE155671.011	SOIL - 6/8/2016 SE155671.012	SOIL - 6/8/2016 SE155671.013	SOIL - 6/8/2016 SE155671.014
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210

SE155671 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/8/2016

			BH202_0.1-0.2	BH202_0.8-0.9	BH206_0.35-0.45	BH206_1.3-1.4	BH207_0.3-0.4
			2011	2011	201	201	2011
			- 5012	- SOIL	- 5012	- 50IL	-
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.002	SE155671.003	SE155671.004	SE155671.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	1.5	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	1.5	<0.8	<0.8

			BH207_0.8-0.9	BH208_0.1-0.2	BH208_0.7-0.8	BH209_0.1-0.2	BH209_0.7-0.8
			2011	SOII	SOII	5011	SOIL
			- 3012	- 3012			-
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.006	SE155671.007	SE155671.008	SE155671.009	SE155671.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.2	0.3	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	0.2	0.4	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.2	0.2	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	0.2	0.2	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.1	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	0.1	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.1	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.1	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.2</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.2	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	1.3	1.4	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	1.3	1.4	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/8/2016 (continued)

			BH210_0.2-0.4	BH210_0.7-0.8	BH211_0.3-0.4
			SOII	SOIL	SOIL
			-	-	-
			6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.012	SE155671.013
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8

SE155671 R0

OC Pesticides in Soil [AN400/AN420] Tested: 10/8/2016

			BH202_0.1-0.2	BH206_0.35-0.45	BH207_0.3-0.4	BH208_0.1-0.2	BH209_0.1-0.2
			001	001	001		00"
			SUIL	SUL	SUIL	SUIL	SUIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.003	SE155671.005	SE155671.007	SE155671.009
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

OC Pesticides in Soil [AN400/AN420] Tested: 10/8/2016 (continued)

			BH210_0.2-0.4	BH211_0.3-0.4
			SOIL - 6/8/2016	SOIL - 6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.013
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 10/8/2016

			BH202_0.1-0.2	BH206_0.35-0.45	BH207_0.3-0.4	BH208_0.1-0.2	BH209_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.003	SE155671.005	SE155671.007	SE155671.009
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			BH210_0.2-0.4	BH211_0.3-0.4
			SOIL	SOIL
			-	-
PARAMETER	ПОМ	LOR	6/8/2016 SE155671 011	6/8/2016 SE155671.013
	ma/ka	0.5	<0.5	SE 13307 1.013
		0.5	~0.5	-0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2

SE155671 R0

PCBs in Soil [AN400/AN420] Tested: 10/8/2016

			BH202_0.1-0.2	BH206_0.35-0.45	BH207_0.3-0.4	BH208_0.1-0.2	BH209_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.003	SE155671.005	SE155671.007	SE155671.009
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH210_0.2-0.4	BH211_0.3-0.4
			SOIL - 6/8/2016	SOIL - 6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.013
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

Total Phenolics in Soil [AN289] Tested: 12/8/2016

			BH202_0.1-0.2	BH206_0.35-0.45	BH207_0.3-0.4	BH208_0.1-0.2	BH209_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.003	SE155671.005	SE155671.007	SE155671.009
Total Phenols	mg/kg	0.1	1.1	0.5	0.2	0.2	0.2

			BH210_0.2-0.4	BH211_0.3-0.4
			SOIL	SOIL
			6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.013
Total Phenols	mg/kg	0.1	0.2	0.4

SE155671 R0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 12/8/2016

			BH202_0.1-0.2	BH202_0.8-0.9	BH206_0.35-0.45	BH206_1.3-1.4	BH207_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.002	SE155671.003	SE155671.004	SE155671.005
Arsenic, As	mg/kg	3	3	<3	<3	<3	<3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	1.9	2.1	0.8	1.7	2.7
Copper, Cu	mg/kg	0.5	13	8.2	2.1	<0.5	1.8
Lead, Pb	mg/kg	1	36	3	10	1	4
Nickel, Ni	mg/kg	0.5	1.6	0.6	<0.5	<0.5	0.9
Zinc, Zn	mg/kg	0.5	120	9.0	2.6	0.9	3.6

			BH207_0.8-0.9	BH208_0.1-0.2	BH208_0.7-0.8	BH209_0.1-0.2	BH209_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/8/2016	- 6/8/2016	- 6/8/2016	- 6/8/2016	- 6/8/2016
PARAMETER	UOM	LOR	SE155671.006	SE155671.007	SE155671.008	SE155671.009	SE155671.010
Arsenic, As	mg/kg	3	<3	<3	<3	<3	<3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	4.5	3.6	2.2	1.4	1.1
Copper, Cu	mg/kg	0.5	1.9	15	5.0	1.8	<0.5
Lead, Pb	mg/kg	1	4	33	20	5	1
Nickel, Ni	mg/kg	0.5	1.4	7.6	2.2	0.7	0.5
Zinc, Zn	mg/kg	0.5	3.6	65	34	8.0	1.3

			BH210_0.2-0.4	BH210_0.7-0.8	BH211_0.3-0.4	QD100
			SOIL	SOIL	SOIL	SOIL
			- 6/8/2016	- 6/8/2016	- 6/8/2016	- 6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.012	SE155671.013	SE155671.014
Arsenic, As	mg/kg	3	<3	<3	<3	<3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	1.6	1.6	2.4	0.9
Copper, Cu	mg/kg	0.5	3.1	0.8	4.0	1.5
Lead, Pb	mg/kg	1	1	2	6	7
Nickel, Ni	mg/kg	0.5	0.5	<0.5	0.9	<0.5
Zinc, Zn	mg/kg	0.5	0.9	1.2	9.7	2.0

Mercury in Soil [AN312] Tested: 11/8/2016

			BH202_0.1-0.2	BH202_0.8-0.9	BH206_0.35-0.45	BH206_1.3-1.4	BH207_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.002	SE155671.003	SE155671.004	SE155671.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH207_0.8-0.9	BH208_0.1-0.2	BH208_0.7-0.8	BH209_0.1-0.2	BH209_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.006	SE155671.007	SE155671.008	SE155671.009	SE155671.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH210_0.2-0.4	BH210_0.7-0.8	BH211_0.3-0.4	QD100
			SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.012	SE155671.013	SE155671.014
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05

Moisture Content [AN002] Tested: 11/8/2016

			BH202 0.1-0.2	BH202 0.8-0.9	BH206 0.35-0.45	BH206 1.3-1.4	BH207 0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			OOIE	USUE .	OCIE	COL	COL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.002	SE155671.003	SE155671.004	SE155671.005
0/ Mainture	0//	0.5					
% Moisture	%W/W	0.5	6.2	5.7	2.0	1.4	6.0

			BH207_0.8-0.9	BH208_0.1-0.2	BH208_0.7-0.8	BH209_0.1-0.2	BH209_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.006	SE155671.007	SE155671.008	SE155671.009	SE155671.010
% Moisture	%w/w	0.5	6.3	3.9	2.7	3.3	1.7

			BH210_0.2-0.4	BH210_0.7-0.8	BH211_0.3-0.4	QD100	QTB100
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.012	SE155671.013	SE155671.014	SE155671.016
% Moisture	%w/w	0.5	2.4	1.3	6.1	2.2	<0.5

Fibre Identification in soil [AN602] Tested: 12/8/2016

			BH202_0.1-0.2	BH206_0.35-0.45	BH207_0.3-0.4	BH208_0.1-0.2	BH209_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/8/2016	6/8/2016	6/8/2016	6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.001	SE155671.003	SE155671.005	SE155671.007	SE155671.009
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH210_0.2-0.4	BH211_0.3-0.4
			SOIL	SOIL
			6/8/2016	6/8/2016
PARAMETER	UOM	LOR	SE155671.011	SE155671.013
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

VOCs in Water [AN433] Tested: 10/8/2016

			QR100
			SOIL - 6/8/2016
PARAMETER	UOM	LÖR	SE155671.015
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 10/8/2016

			QR100
			SOIL - 6/8/2016
PARAMETER	UOM	LOR	SE155671.015
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

SE155671 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 10/8/2016

			QR100
			SOIL
			-
PARAMETER	цом	LOR	5/8/2016 SE155671 015
TRH C10-C14	μg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	μg/L	200	<200
TRH >C10-C16 (F2)	μg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	μg/L	500	<500
TRH C10-C36	μg/L	450	<450
TRH C10-C40	μg/L	650	<650

SE155671 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 12/8/2016

			QR100
			SOIL -
			6/8/2016
PARAMETER	UOM	LOR	SE155671.015
Arsenic, As	µg/L	1	<1
Cadmium, Cd	μg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	μg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 12/8/2016

			QR100
			SOIL
			6/8/2016
PARAMETER	UOM	LOR	SE155671.015
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).

 AN602
 AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

 AN602
 The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-</td>

 (a)
 no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):

 (b)
 the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and

 (c)
 these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	s
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Emmanuel.Woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22282 - 12-24 Rothschild Ave, Rosebery	SGS Reference	SE155671 R0
Order Number	E22282	Date Received	08 Aug 2016
Samples	17	Date Reported	15 Aug 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Trace Metals (Dissolved) in Water by ICPMS

1 item

Sample counts by matrix	16 Soil, 1 Water	Type of documentation received	COC	
Date documentation received	8/8/2016	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	8.5°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

Australia t Australia f

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil							Method: N	ME-(AU)-[ENV]AN602
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH202_0.1-0.2	SE155671.001	LB107546	06 Aug 2016	08 Aug 2016	06 Aug 2017	12 Aug 2016	06 Aug 2017	15 Aug 2016
BH206_0.35-0.45	SE155671.003	LB107546	06 Aug 2016	08 Aug 2016	06 Aug 2017	12 Aug 2016	06 Aug 2017	15 Aug 2016
BH207_0.3-0.4	SE155671.005	LB107546	06 Aug 2016	08 Aug 2016	06 Aug 2017	12 Aug 2016	06 Aug 2017	15 Aug 2016
BH208_0.1-0.2	SE155671.007	LB107546	06 Aug 2016	08 Aug 2016	06 Aug 2017	12 Aug 2016	06 Aug 2017	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107546	06 Aug 2016	08 Aug 2016	06 Aug 2017	12 Aug 2016	06 Aug 2017	15 Aug 2016
BH210_0.2-0.4	SE155671.011	LB107546	06 Aug 2016	08 Aug 2016	06 Aug 2017	12 Aug 2016	06 Aug 2017	15 Aug 2016
BH211_0.3-0.4	SE155671.013	LB107546	06 Aug 2016	08 Aug 2016	06 Aug 2017	12 Aug 2016	06 Aug 2017	15 Aug 2016
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]	AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR100	SE155671.015	LB107488	06 Aug 2016	08 Aug 2016	03 Sep 2016	12 Aug 2016	03 Sep 2016	12 Aug 2016

Mercury in Soil							Method: I	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH202_0.1-0.2	SE155671.001	LB107441	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH202_0.8-0.9	SE155671.002	LB107441	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH206_0.35-0.45	SE155671.003	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH206_1.3-1.4	SE155671.004	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH207_0.3-0.4	SE155671.005	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH207_0.8-0.9	SE155671.006	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH208_0.1-0.2	SE155671.007	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH208_0.7-0.8	SE155671.008	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH209_0.7-0.8	SE155671.010	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH210_0.2-0.4	SE155671.011	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH210_0.7-0.8	SE155671.012	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
BH211_0.3-0.4	SE155671.013	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
QD100	SE155671.014	LB107443	06 Aug 2016	08 Aug 2016	03 Sep 2016	11 Aug 2016	03 Sep 2016	15 Aug 2016
Moisture Content							Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH202_0.1-0.2	SE155671.001	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH202_0.8-0.9	SE155671.002	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH206_0.35-0.45	SE155671.003	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH206_1.3-1.4	SE155671.004	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH207_0.3-0.4	SE155671.005	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH207_0.8-0.9	SE155671.006	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH208_0.1-0.2	SE155671.007	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH208_0.7-0.8	SE155671.008	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH209_0.7-0.8	SE155671.010	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH210_0.2-0.4	SE155671.011	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH210_0.7-0.8	SE155671.012	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
BH211_0.3-0.4	SE155671.013	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
QD100	SE155671.014	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
QTB100	SE155671.016	LB107435	06 Aug 2016	08 Aug 2016	20 Aug 2016	11 Aug 2016	16 Aug 2016	15 Aug 2016
OC Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH202_0.1-0.2	SE155671.001	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH202_0.8-0.9	SE155671.002	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_0.35-0.45	SE155671.003	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_1.3-1.4	SE155671.004	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0.3-0.4	SE155671.005	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0.8-0.9	SE155671.006	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0.1-0.2	SE155671.007	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0.7-0.8	SE155671.008	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209_0.7-0.8	SE155671.010	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH210_0.2-0.4	SE155671.011	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016

08 Aug 2016

20 Aug 2016

10 Aug 2016

19 Sep 2016

BH210 0.7-0.8

SE155671.012

LB107362

06 Aug 2016

15 Aug 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (contin	ued)						Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH211_0.3-0.4	SE155671.013	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
QD100	SE155671.014	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
OP Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analysed
BH202 0.1-0.2	SE155671.001	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH202 0.8-0.9	SE155671.002	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_0.35-0.45	SE155671.003	L B107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206 1.3-1.4	SE155671.004	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0_3-0_4	SE155671.005	L B107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0.8-0.9	SE155671.006	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0_1-0_2	SE155671.007	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0.7-0.8	SE155671.008	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209_0.7-0.8	SE155671.010	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH210 0 2 0 4	SE155671.010	LD107362	06 Aug 2016	08 Aug 2016	20 Aug 2010	10 Aug 2010	10 Sep 2010	15 Aug 2016
BH210_0.2-0.4	SE155071.011	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2010	10 Aug 2010	19 Sep 2010	15 Aug 2016
BH211_0.3-0.4	SE155671.012	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2010	19 Sep 2010	15 Aug 2016
DD100	SE155071.013	LB107302	06 Aug 2010	08 Aug 2016	20 Aug 2010	10 Aug 2010	19 Sep 2010	15 Aug 2010
QD100	SE155071.014	LB107302	06 Aug 2016	06 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
PAH (Polynuclear Aromatic H	Hydrocarbons) in Soil						Method: I	VIE-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH202_0.1-0.2	SE155671.001	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH202_0.8-0.9	SE155671.002	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_0.35-0.45	SE155671.003	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_1.3-1.4	SE155671.004	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0.3-0.4	SE155671.005	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0.8-0.9	SE155671.006	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0.1-0.2	SE155671.007	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0.7-0.8	SE155671.008	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209_0.7-0.8	SE155671.010	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH210_0.2-0.4	SE155671.011	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH210_0.7-0.8	SE155671.012	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH211_0.3-0.4	SE155671.013	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
QD100	SE155671.014	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
PCBs in Soil							Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH202 0.1-0.2	SE155671.001	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH202_0.8-0.9	SE155671.002	L B107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_0.35-0.45	SE155671.003	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_1.3-1.4	SE155671.004	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0_3-0.4	SE155671.005	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207 0.8-0 9	SE155671.006	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2010	10 Aug 2010	19 Sen 2016	15 Aug 2016
BH208 0.1-0.2	SE155671.007	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0.7-0.8	SE155671.008	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	10 Sep 2016	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209 0 7-0 8	SE155671.010	LB107362	06 Aug 2010	08 Aug 2010	20 Aug 2010	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH210_0.2-0.4	SE155671.011	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH210_0.2-0.4	SE155671.012	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2010	19 Sep 2010	15 Aug 2016
BH211_0_3_0_4	SE155671.012	LB 107362	06 Aug 2010	08 Aug 2010	20 Aug 2010	10 Aug 2010	19 Sep 2010	15 Aug 2010
00100	QE155671.014	1 8107363	06 Aug 2010	08 Aug 2010	20 / 10 2016	10 Aug 2010	10 Sep 2010	15 Aug 2016
Tetel Dhenelies in Onli	GE 10007 1.014	LD 107302	00 Aug 20 10	00 Aug 2010	20 709 20 10	10 Aug 2010	10 Gep 2010	
							Method: I	vie-(AU)-lenvjan289
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DF12U2_U.1-U.2	SE1556/1.001	LB10/483	Ub Aug 2016	U8 Aug 2016	20 Aug 2016	12 Aug 2016	20 Aug 2016	15 Aug 2016
BH206_0.35-0.45	SE155671.003	LB107483	06 Aug 2016	08 Aug 2016	20 Aug 2016	12 Aug 2016	20 Aug 2016	15 Aug 2016
BH207_0.3-0.4	SE155671.005	LB107483	06 Aug 2016	08 Aug 2016	20 Aug 2016	12 Aug 2016	20 Aug 2016	15 Aug 2016
вн208_0.1-0.2	SE155671.007	LB107483	06 Aug 2016	08 Aug 2016	20 Aug 2016	12 Aug 2016	20 Aug 2016	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107483	06 Aug 2016	08 Aug 2016	20 Aug 2016	12 Aug 2016	20 Aug 2016	15 Aug 2016
BH210 0.2-0.4	SE155671.011	LB107483	06 Aug 2016	08 Aug 2016	20 Aug 2016	12 Aug 2016	20 Aug 2016	15 Aug 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Phenolics in Soil (continued)

VOC's in Soil

Sample Name

BH202_0.1-0.2

BH202 0.8-0.9

BH206 0.35-0.45

BH206_1.3-1.4

BH207 0.3-0.4

BH207_0.8-0.9

BH208_0.1-0.2

BH208 0.7-0.8

SE155671.008

LB107350

Total Phenolics in Soil (conf	Phenolics in Soil (continued) Method: ME-(AU)-[ENV]AN289									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH211_0.3-0.4	SE155671.013	LB107483	06 Aug 2016	08 Aug 2016	20 Aug 2016	12 Aug 2016	20 Aug 2016	15 Aug 2016		
Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES							Method: ME-(AU)	-[ENV]AN040/AN320		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH202_0.1-0.2	SE155671.001	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH202_0.8-0.9	SE155671.002	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH206_0.35-0.45	SE155671.003	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH206_1.3-1.4	SE155671.004	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH207_0.3-0.4	SE155671.005	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH207_0.8-0.9	SE155671.006	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH208_0.1-0.2	SE155671.007	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH208_0.7-0.8	SE155671.008	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH209_0.1-0.2	SE155671.009	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH209_0.7-0.8	SE155671.010	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH210_0.2-0.4	SE155671.011	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH210_0.7-0.8	SE155671.012	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
BH211_0.3-0.4	SE155671.013	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
QD100	SE155671.014	LB107477	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016		
Trace Metals (Dissolved) in	race Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318									

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR100	SE155671.015	LB107495	06 Aug 2016	08 Aug 2016	02 Feb 2017	12 Aug 2016	02 Feb 2017	15 Aug 2016

TRH (Total Recoverable I	H (Total Recoverable Hydrocarbons) in Soil Meth								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH202_0.1-0.2	SE155671.001	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH202_0.8-0.9	SE155671.002	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH206_0.35-0.45	SE155671.003	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH206_1.3-1.4	SE155671.004	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH207_0.3-0.4	SE155671.005	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH207_0.8-0.9	SE155671.006	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH208_0.1-0.2	SE155671.007	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH208_0.7-0.8	SE155671.008	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH209_0.1-0.2	SE155671.009	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH209_0.7-0.8	SE155671.010	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH210_0.2-0.4	SE155671.011	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH210_0.7-0.8	SE155671.012	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
BH211_0.3-0.4	SE155671.013	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
QD100	SE155671.014	LB107362	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016	
TRH (Total Recoverable	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN403	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
QR100	SE155671.015	LB107373	06 Aug 2016	08 Aug 2016	13 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016	

Sample No. QC Ref Sampled Received Extraction Due Extracted SE155671.001 LB107350 06 Aug 2016 08 Aug 2016 20 Aug 2016 10 Aug 2016 LB107350 SE155671.002 06 Aug 2016 08 Aug 2016 20 Aug 2016 10 Aug 2016 SE155671.003 LB107350 06 Aug 2016 08 Aug 2016 20 Aug 2016 10 Aug 2016 SE155671.004 LB107350 08 Aug 2016 06 Aug 2016 20 Aug 2016 10 Aug 2016 SE155671.005 LB107350 06 Aug 2016 08 Aug 2016 10 Aug 2016 20 Aug 2016 SE155671.006 LB107350 06 Aug 2016 08 Aug 2016 20 Aug 2016 10 Aug 2016 SE155671.007 LB107350 06 Aug 2016 08 Aug 2016 20 Aug 2016 10 Aug 2016

06 Aug 2016

Method: ME-(AU)-[ENV]AN433

19 Sep 2016

Analysis Due Analysed

15 Aug 2016

BH209_0.1-0.2	SE155671.009	LB107350	06 Aug 2016	08 Aug 2016	20 AUG 2016	10 Aug 2016	19 Sep 2016	
BH209_0.7-0.8	SE155671.010	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	
BH210_0.2-0.4	SE155671.011	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	
BH210_0.7-0.8	SE155671.012	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	
BH211_0.3-0.4	SE155671.013	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	
QD100	SE155671.014	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	
45/0/0040								
15/8/2010								

08 Aug 2016

20 Aug 2016

10 Aug 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued)							Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QTB100	SE155671.016	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
QTS100	SE155671.017	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
VOCs in Water							Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR100	SE155671.015	LB107329	06 Aug 2016	08 Aug 2016	13 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum Hydroca	rbons in Soil						Method: M	IE-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH202_0.1-0.2	SE155671.001	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH202_0.8-0.9	SE155671.002	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_0.35-0.45	SE155671.003	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH206_1.3-1.4	SE155671.004	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0.3-0.4	SE155671.005	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH207_0.8-0.9	SE155671.006	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0.1-0.2	SE155671.007	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH208_0.7-0.8	SE155671.008	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209_0.1-0.2	SE155671.009	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH209_0.7-0.8	SE155671.010	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH210_0.2-0.4	SE155671.011	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH210_0.7-0.8	SE155671.012	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
BH211_0.3-0.4	SE155671.013	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
QD100	SE155671.014	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
QTB100	SE155671.016	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
QTS100	SE155671.017	LB107350	06 Aug 2016	08 Aug 2016	20 Aug 2016	10 Aug 2016	19 Sep 2016	15 Aug 2016
Volatile Petroleum Hydroca	rbons in Water						Method: N	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR100	SE155671.015	LB107329	06 Aug 2016	08 Aug 2016	13 Aug 2016	10 Aug 2016	19 Sep 2016	12 Aug 2016

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: ME-(AU)-	ENVJAN400/AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH202_0.1-0.2	SE155671.001	%	60 - 130%	81
	BH206_0.35-0.45	SE155671.003	%	60 - 130%	78
	BH207_0.3-0.4	SE155671.005	%	60 - 130%	77
	BH208_0.1-0.2	SE155671.007	%	60 - 130%	79
	BH209_0.1-0.2	SE155671.009	%	60 - 130%	79
	BH210_0.2-0.4	SE155671.013		60 - 130%	107
	D1211_0.0-0.4	SE133071.013	70	00-130%	
OP Pesticides in Soil				Method: ME-(AU)-	[ENV]AN400/AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH202_0.1-0.2	SE155671.001	%	60 - 130%	80
	BH206_0.35-0.45	SE155671.003	%	60 - 130%	80
	BH207_0.3-0.4	SE155671.005	%	60 - 130%	80
	BH200_0.1-0.2	SE155671.007		60 130%	10
	BH210_0.2.0.4	SE155671.011	/0	60 - 130%	72
	BH211_0.3-0.4	SE155671.013	%	60 - 130%	84
d14-p-terphenyl (Surrogate)	BH202_0.1-0.2	SE155671.001	%	60 - 130%	116
	BH206_0.35-0.45	SE155671.003	%	60 - 130%	118
	BH207 0.3-0.4	SE155671.005	%	60 - 130%	112
	BH208_0.1-0.2	SE155671.007	%	60 - 130%	114
	BH209_0.1-0.2	SE155671.009	%	60 - 130%	104
	BH210_0.2-0.4	SE155671.011	%	60 - 130%	112
	BH211_0.3-0.4	SE155671.013	%	60 - 130%	106
PAH (Polynuclear Aromatic Hydrocarbons) in Soli				Method: M	E-(AU)-IENVIAN42(
Parameter	Sample Name	Sample Number	Unite	Critoria	Recovery %
2 fluorobiohenvil (Surrogate)	BH202 0 1.0 2	SE155671 001	0/1113	70 - 130%	80
	BH202_0.8-0.9	SE155671.001	%	70 - 130%	86
	BH206_0.35-0.45	SE155671.002	%	70 - 130%	80
	BH206 1.3-1.4	SE155671.004	%	70 - 130%	82
	BH207 0.3-0.4	SE155671.005	%	70 - 130%	80
	BH207_0.8-0.9	SE155671.006	%	70 - 130%	78
	BH208_0.1-0.2	SE155671.007	%	70 - 130%	78
	BH208_0.7-0.8	SE155671.008	%	70 - 130%	84
	BH209_0.1-0.2	SE155671.009	%	70 - 130%	82
	BH209_0.7-0.8	SE155671.010	%	70 - 130%	74
	BH210_0.2-0.4	SE155671.011	%	70 - 130%	72
	BH210_0.7-0.8	SE155671.012	%	70 - 130%	76
	BH211_0.3-0.4	SE155671.013	%	70 - 130%	84
d14-p-terphenyl (Surrogate)	BH202_0.1-0.2	SE155671.001	%	70 - 130%	116
	BH202_0.8-0.9	SE155671.002	%	70 - 130%	92
	BH206_0.35-0.45	SE155671.003	%	70 - 130%	118
	BH206_1.3-1.4	SE155671.004	%	70 - 130%	116
	BH207_0.3-0.4	SE155671.005	%	70 - 130%	112
	BH208_0.1.0.2	SE155671.007	0/	70 - 130%	110
	BH208_0.1-0.2 BH208_0.7-0.8	SE155671.008	%	70 - 130%	114
	BH209_0.1-0.2	SE155671.009	%	70 - 130%	104
	BH209_0.7-0.8	SE155671.010	%	70 - 130%	92
	BH210 0.2-0.4	SE155671.011	%	70 - 130%	112
	BH210_0.7-0.8	SE155671.012	%	70 - 130%	108
	BH211_0.3-0.4	SE155671.013	%	70 - 130%	106
d5-nitrobenzene (Surrogate)	BH202_0.1-0.2	SE155671.001	%	70 - 130%	78
	BH202_0.8-0.9	SE155671.002	%	70 - 130%	78
	BH206_0.35-0.45	SE155671.003	%	70 - 130%	76
	BH206_1.3-1.4	SE155671.004	%	70 - 130%	76
	BH207_0.3-0.4	SE155671.005	%	70 - 130%	74
	BH207_0.8-0.9	SE155671.006	%	70 - 130%	74
	BH208_0.1-0.2	SE155671.007	%	70 - 130%	72
	BH208_0.7-0.8	SE155671.008	%	70 - 130%	78
	BH209_0.1-0.2	SE155671.009	%	70 - 130%	76

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soll (continued)				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d5-nitrobenzene (Surrogate)	BH209_0.7-0.8	SE155671.010	%	70 - 130%	82
	BH210_0.2-0.4	SE155671.011	%	70 - 130%	76
	BH210_0.7-0.8	SE155671.012	%	70 - 130%	78
	BH211_0.3-0.4	SE155671.013	%	70 - 130%	74
PCBs in Soil				Method: ME-(AU)-	[ENV]AN400/AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recoverv %
Tetrachloro m-xylene (TCMX) (Surrogate)	BH202 0 1.0 2	SE155671 001	0/	60 - 130%	81
reliachioro-ni-xylene (rowx) (ourogate)	BH206_0.35_0.45	SE155671.003	0/	60 - 130%	78
	BH207_0.3-0.4	SE155671.005	%	60 - 130%	77
	BH208_0.1-0.2	SE155671.007	%	60 - 130%	79
	BH209_0.1-0.2	SE155671.009	%	60 - 130%	79
	BH210 0.2-0.4	SE155671.011	%	60 - 130%	82
	BH211 0.3-0.4	SE155671.013	%	60 - 130%	107
VOC's in Soil				Method: M	E-(AU)-IENVIAN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recoverv %
Bromofluorobenzene (Surrogate)	BH202 0.1-0.2	SE155671.001	%	60 - 130%	116
	BH202 0.8-0.9	SE155671.002	%	60 - 130%	96
	BH206 0.35-0.45	SE155671.003	%	60 - 130%	123
	BH206 1.3-1.4	SE155671.004	%	60 - 130%	112
	BH207 0.3-0.4	SE155671.005	%	60 - 130%	93
	BH207 0.8-0.9	SE155671.006	%	60 - 130%	99
	BH208 0.1-0.2	SE155671.007	%	60 - 130%	107
	BH208 0.7-0.8	SE155671.008	%	60 - 130%	96
	BH209 0.1-0.2	SE155671.009	%	60 - 130%	110
	BH209 0.7-0.8	SE155671.010	%	60 - 130%	106
	BH210_0.2-0.4	SE155671.011	%	60 - 130%	114
	BH210_0.7-0.8	SE155671.012	%	60 - 130%	120
	BH211_0.3-0.4	SE155671.013	%	60 - 130%	110
	QD100	SE155671.014	%	60 - 130%	111
	QTB100	SE155671.016	%	60 - 130%	99
	QTS100	SE155671.017	%	60 - 130%	120
d4-1,2-dichloroethane (Surrogate)	BH202_0.1-0.2	SE155671.001	%	60 - 130%	82
	BH202_0.8-0.9	SE155671.002	%	60 - 130%	82
	BH206_0.35-0.45	SE155671.003	%	60 - 130%	88
	BH206_1.3-1.4	SE155671.004	%	60 - 130%	85
	BH207_0.3-0.4	SE155671.005	%	60 - 130%	86
	BH207_0.8-0.9	SE155671.006	%	60 - 130%	94
	BH208_0.1-0.2	SE155671.007	%	60 - 130%	94
	BH208_0.7-0.8	SE155671.008	%	60 - 130%	97
	BH209_0.1-0.2	SE155671.009	%	60 - 130%	97
	BH209_0.7-0.8	SE155671.010	%	60 - 130%	94
	BH210_0.2-0.4	SE155671.011	%	60 - 130%	102
	BH210_0.7-0.8	SE155671.012	%	60 - 130%	101
	BH211_0.3-0.4	SE155671.013	%	60 - 130%	99
	QD100	SE155671.014	%	60 - 130%	103
	QTB100	SE155671.016	%	60 - 130%	114
	QTS100	SE155671.017	%	60 - 130%	100
d8-toluene (Surrogate)	BH202_0.1-0.2	SE155671.001	%	60 - 130%	104
	BH202_0.8-0.9	SE155671.002	%	60 - 130%	121
	BH206_0.35-0.45	SE155671.003	%	60 - 130%	112
	BH206_1.3-1.4	SE155671.004	%	60 - 130%	109
	вн207_0.3-0.4	SE155671.005	%	60 - 130%	116
	BH207_0.8-0.9	SE155671.006	%	60 - 130%	128
	BH208_0.1-0.2	SE155671.007	%	60 - 130%	113
	вН208_0.7-0.8	SE155671.008	%	60 - 130%	114
	BH209_0.1-0.2	SE155671.009	%	60 - 130%	108
	BH209_0.7-0.8	SE155671.010	%	60 - 130%	130
	BH210_0.2-0.4	5E1556/1.011	~ %	60 130%	113
	BH210_0.7-0.8	SE155671.012	%	60 - 130%	128
	BH211_0.3-0.4	SE155671.013	%	60 - 130%	127

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Units Criteria Parameter Sample Name Sample Number d8-toluene (Surrogate) QD100 SE155671.014 % 60 - 130% 112 QTB100 SE155671.016 60 - 130% % 114 QTS100 SE155671.017 % 60 - 130% 129 Dibromofluoromethane (Surrogate) BH202_0.1-0.2 SE155671.001 60 - 130% 76 % BH202_0.8-0.9 SE155671.002 60 - 130% 80 % BH206 0.35-0.45 SE155671.003 % 60 - 130% 87 BH206 1.3-1.4 SE155671.004 % 60 - 130% 83 BH207_0.3-0.4 SE155671.005 % 60 - 130% 80 BH207 0.8-0.9 SE155671.006 % 60 - 130% 87 BH208 0.1-0.2 SE155671.007 60 - 130% 88 % BH208_0.7-0.8 SE155671.008 % 60 - 130% 91 BH209 0.1-0.2 SE155671.009 % 60 - 130% 90 BH209 0.7-0.8 SE155671.010 % 60 - 130% 87 BH210_0.2-0.4 SE155671.011 60 - 130% 96 % BH210 0.7-0.8 SE155671.012 % 60 - 130% 95 BH211_0.3-0.4 SE155671.013 % 60 - 130% 92 QD100 SE155671.014 % 60 - 130% 105 QTB100 SE155671.016 % 60 - 130% 110 QTS100 SE155671.017 % 60 - 130% 96 **VOCs in Water** Method: ME-(AU)-[ENV]AN433 Parameter Sample Nan Sample Num Criteria Recovery % Bromofluorobenzene (Surrogate) QR100 SE155671.015 % 40 - 130% 78 d4-1,2-dichloroethane (Surrogate) QR100 SE155671.015 40 - 130% 127 % QR100 SE155671.015 40 - 130% 107 d8-toluene (Surrogate) % Dibromofluoromethane (Surrogate) QR100 SE155671.015 % 40 - 130% 119 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Recovery % Parameter Sample Name Sample Numb Units Criteria Bromofluorobenzene (Surrogate) BH202_0.1-0.2 SE155671.001 60 - 130% 96 % BH202 0.8-0.9 SE155671.002 % 60 - 130% 96 BH206_0.35-0.45 SE155671.003 % 60 - 130% 111 BH206 1.3-1.4 SE155671.004 60 - 130% 112 % BH207 0.3-0.4 SE155671.005 % 60 - 130% 101 99 BH207 0.8-0.9 SE155671.006 % 60 - 130% BH208_0.1-0.2 SE155671.007 60 - 130% 100 % BH208 0.7-0.8 SE155671.008 % 60 - 130% 96 BH209_0.1-0.2 SE155671.009 60 - 130% 102 % BH209_0.7-0.8 SE155671.010 60 - 130% 106 % BH210 0.2-0.4 SE155671.011 % 60 - 130% 105 BH210_0.7-0.8 SE155671.012 60 - 130% 120 % BH211_0.3-0.4 SE155671.013 60 - 130% % 100 QD100 SE155671.014 % 60 - 130% 111 BH202_0.1-0.2 82 d4-1,2-dichloroethane (Surrogate) SE155671.001 % 60 - 130% BH202_0.8-0.9 SE155671.002 60 - 130% % 82 BH206 0.35-0.45 SE155671.003 % 60 - 130% 88 85 BH206_1.3-1.4 SE155671.004 % 60 - 130% BH207 0.3-0.4 SE155671.005 % 60 - 130% 87 BH207 0.8-0.9 SE155671.006 % 60 - 130% 94 BH208_0.1-0.2 SE155671.007 % 60 - 130% 94 SE155671.008 60 - 130% BH208_0.7-0.8 97 % BH209 0.1-0.2 SE155671.009 % 60 - 130% 97 BH209_0.7-0.8 94 SE155671.010 % 60 - 130% BH210_0.2-0.4 60 - 130% 102 SE155671.011 % BH210 0.7-0.8 SE155671.012 % 60 - 130% 101 BH211_0.3-0.4 SE155671.013 60 - 130% 99 % QD100 SE155671.014 60 - 130% 103 % d8-toluene (Surrogate) BH202 0.1-0.2 SE155671.001 % 60 - 130% 118 BH202_0.8-0.9 SE155671.002 % 60 - 130% 121 BH206_0.35-0.45 SE155671.003 % 60 - 130% 110 BH206 1.3-1.4 SE155671.004 % 60 - 130% 109 BH207_0.3-0.4 SE155671.005 60 - 130% % 122

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Sample Name Sample Number Units Criteria Parameter d8-toluene (Surrogate) BH207_0.8-0.9 SE155671.006 % 60 - 130% 128 BH208_0.1-0.2 SE155671.007 % 60 - 130% 130 BH208 0.7-0.8 SE155671.008 % 60 - 130% 114 BH209_0.1-0.2 SE155671.009 % 60 - 130% 125 BH209_0.7-0.8 SE155671.010 % 60 - 130% 130 BH210 0.2-0.4 SE155671.011 % 60 - 130% 108 BH210 0.7-0.8 SE155671.012 % 60 - 130% 128 SE155671.013 60 - 130% 127 BH211_0.3-0.4 % QD100 SE155671.014 % 60 - 130% 112 Dibromofluoromethane (Surrogate) BH202 0.1-0.2 SE155671.001 % 60 - 130% 77 60 - 130% 80 BH202_0.8-0.9 SE155671.002 % BH206 0.35-0.45 SE155671.003 60 - 130% % 87 BH206 1.3-1.4 SE155671.004 % 60 - 130% 83 SE155671.005 BH207_0.3-0.4 % 60 - 130% 81 BH207 0.8-0.9 SE155671.006 % 60 - 130% 87 BH208_0.1-0.2 SE155671.007 % 60 - 130% 88 BH208_0.7-0.8 SE155671.008 % 60 - 130% 91 BH209 0.1-0.2 SE155671.009 % 60 - 130% 91 BH209 0.7-0.8 SE155671.010 % 60 - 130% 87 BH210_0.2-0.4 SE155671.011 % 60 - 130% 96 BH210 0.7-0.8 SE155671.012 % 60 - 130% 95 BH211_0.3-0.4 SE155671.013 % 60 - 130% 93 QD100 SE155671.014 % 60 - 130% 105 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Units Criteria Recovery % Parameter Sample Name Sample Numb Bromofluorobenzene (Surrogate) QR100 SE155671.015 % 40 - 130% 78 QR100 60 - 130% 127 d4-1,2-dichloroethane (Surrogate) SE155671.015 %

SE155671.015

SE155671.015

%

%

40 - 130%

40 - 130%

107

119

OR100

QR100

d8-toluene (Surrogate)

Dibromofluoromethane (Surrogate)

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-[ENV]AN400/AN420

Result

<0.5

<0.5 <0.5

<0.2

<0.2

<0.2

< 0.2

<0.2

<0.5

<0.2

<0.2 88

LOR

0.5

0.5

0.5 0.2

0.2

0.2

0.2

0.2

0.5

0.2

0.2

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB107488.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Sample Number	Parameter	Units	LOR	Result
LB107441.001	Mercury	mg/kg	0.05	<0.05
LB107443.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil				Method: ME-	(AU)-[ENV]AN400/AN420
Sample Number		Parameter	Units	LOR	Result
LB107362.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	87

OP Pesticides in Soil			
Sample Number		Parameter	Unit
LB107362.001	Dichlorvos	mg/kg	
		Dimethoate	mg/k
		Diazinon (Dimpylate)	mg/kg
		Fenitrothion	mg/kg
		Malathion	mg/k
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/k
		Parathion-ethyl (Parathion)	mg/ke
		Bromophos Ethyl	mg/kg
		Methidathion	mg/kg
		Ethion	mg/kg
		Azinphos-methyl (Guthion)	mg/kg
	Surrogates	2-fluorobiphenyl (Surrogate)	%

d14-p-terphenyl (Surrogate) % 122 PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 Sample Number LOR Result Parameter LB107362.001 Naphthalene 0.1 < 0.1 mg/kg 2-methylnaphthalene mg/kg 0.1 <0.1 1-methylnaphthalene mg/kg 0.1 <0.1 0.1 <0.1 Acenaphthylene mg/kg Acenaphthene mg/kg 0.1 <0.1 Fluorene 0.1 <0.1 mg/kg Phenanthrene 0.1 < 0.1 mg/kg Anthracene mg/kg 0.1 <0.1

SE155671 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromat	tic Hydrocarbons) in Soil	(continued)		Metho	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB107362.001		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	86
	2-fluorobiphenyl (Surrogate)	%	-	82	
		d14-p-terphenyl (Surrogate)	%	-	96
PCBs in Soil				Method: ME-	(AU)-IENVIAN400/AN420

DO	Do i	n 0	lioil
-0	D ð I	II C	

					· · · · · · · · · · · · · · · · · · ·
Sample Number		Parameter	Units	LOR	Result
LB107362.001	Arochlor 1016	mg/kg	0.2	<0.2	
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	87
Total Phenolics in Soil				Meth	od: ME-(AU)-[ENV]AN289
Sample Number		Parameter	Units	LOR	Result
LB107483.001		Total Phenols	mg/kg	0.1	<0.1

Total Recoverable Metals in Soil/Waste Solida	Materials by ICPOES		Method: ME-	-(AU)-[ENV]AN040/AN320
Sample Number	Parameter	Units	LOR	Result
LB107477.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
Trace Metals (Dissolved) in Water by ICPMS			Meth	od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB107495.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	µg/L	0.1	<0.1
	Chromium, Cr	µg/L	1	<1
	Copper, Cu	µg/L	1	<1
	Lead, Pb	µg/L	1	<1
	Nickel, Ni	µg/L	1	<1
	Zinc, Zn	µg/L	5	<5
TRH (Total Recoverable Hydrocarbons) in So	1		Meth	od: ME-(AU)-[ENV]AN403
Sample Number	Parameter	Units	LOR	Result
LB107362.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100

TRH (Total Recoverable Hydrocarbons) in Water			Method: ME-(AU)-[E	NVJAN403
Sample Number	Parameter	Units	LOR	

mg/kg

110

TRH C10-C36 Total

<110

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hydrocarbons) in Water (continued) Method: ME-(AU)-[ENV]AN403 Sample Number Parameter Units LOR Result LB107373.001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 µg/L 200 <200 TRH C29-C36 200 <200 µg/L TRH C37-C40 µg/L 200 <200 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Result Sample Numb Parameter Units LOR LB107350.001 Fumigants 0.1 < 0.1 2,2-dichloropropane mg/kg 1,2-dichloropropane mg/kg 0 1 <0.1 cis-1,3-dichloropropene 0.1 <0.1 mg/kg <0.1 trans-1,3-dichloropropene 0.1 mg/kg 1,2-dibromoethane (EDB) mg/kg 0.1 <0.1 Dichlorodifluoromethane (CFC-12) Halogenated Aliphatics mg/kg 1 <1 Chloromethane <1 1 mg/kg Vinyl chloride (Chloroethene) mg/kg 0.1 < 0.1 Bromomethane mg/kg 1 <1 Chloroethane <1 mg/kg 1 Trichlorofluoromethane mg/kg 1 <1 lodomethane 5 <5 mg/kg 1,1-dichloroethene 0.1 <0.1 mg/kg Dichloromethane (Methylene chloride) mg/kg 0.5 < 0.5 Allyl chloride mg/kg 0.1 <0.1 <0.1 trans-1,2-dichloroethene 0.1 mg/kg 1,1-dichloroethane mg/kg 0.1 < 0.1 cis-1,2-dichloroethene 0.1 <0.1 mg/kg Bromochloromethane 0.1 <0.1 mg/kg 1,2-dichloroethane mg/kg 0.1 < 0.1 1,1,1-trichloroethane mg/kg 0.1 <0.1 <0.1 1,1-dichloropropene 0.1 mg/kg Carbon tetrachloride mg/kg 0.1 < 0.1 Dibromomethane 0.1 <0.1 mg/kg Trichloroethene (Trichloroethylene -TCE) 0.1 <0.1 mg/kg 1,1,2-trichloroethane mg/kg 0.1 < 0.1 1,3-dichloropropane mg/kg 0.1 <0.1 Tetrachloroethene (Perchloroethylene,PCE) <0.1 0.1 mg/kg 1,1,1,2-tetrachloroethane mg/kg 0.1 < 0.1 cis-1,4-dichloro-2-butene 1 <1 mg/kg 1,1,2,2-tetrachloroethane <0.1 mg/kg 0.1 1,2,3-trichloropropane mg/kg 0.1 < 0.1 trans-1,4-dichloro-2-butene <1 mg/kg 1 1,2-dibromo-3-chloropropane 0.1 <0.1 mg/kg Hexachlorobutadiene mg/kg 0.1 < 0.1 Halogenated Aromatics Chlorobenzene 0.1 <0.1 mg/kg Bromobenzene 0.1 <0.1 mg/kg 2-chlorotoluene mg/kg 0.1 < 0.1 0.1 <0.1 4-chlorotoluene mg/kg 1,3-dichlorobenzene <0.1 0.1 mg/kg 1.4-dichlorobenzene mg/kg 0.1 < 0.1 1,2-dichlorobenzene 0.1 <0.1 mg/kg 1,2,4-trichlorobenzene 0.1 <0.1 mg/kg 1.2.3-trichlorobenzene mg/kg 0.1 < 0.1 Monocyclic Aromatic Benzene 0.1 <0.1 mg/kg Hydrocarbons Toluene <0.1 0.1 mg/kg Ethylbenzene mg/kg 0.1 < 0.1 0.2 <0.2 m/p-xylene mg/kg <0.1 o-xylene 0.1 mg/kg Styrene (Vinyl benzene) mg/kg 0.1 < 0.1 Isopropylbenzene (Cumene) 0.1 <0.1 mg/kg <0.1 n-propylbenzene 0.1 mg/kg 1,3,5-trimethylbenzene mg/kg 0.1 < 0.1 tert-butylbenzene 0.1 <0.1 mg/kg

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

VOC's in Soil (continued	d)			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB107350.001	Monocyclic Aromatic	1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
	Hydrocarbons	sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate	mg/kg	10	<10
		MEK (2-butanone)	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	82
		d4-1,2-dichloroethane (Surrogate)	%	-	102
		d8-toluene (Surrogate)	%	-	120
		Bromofluorobenzene (Surrogate)	%	-	109
	Totals	Total BTEX	mg/kg	0.6	<0.6
	Trihalomethanes	Chloroform	mg/kg	0.1	<0.1
		Bromodichloromethane	mg/kg	0.1	<0.1
		Chlorodibromomethane	mg/kg	0.1	<0.1
		Bromoform	mg/kg	0.1	<0.1
VOCe in Water				Meth	d ME (ALD IEND/IANI422

Sample Number				Would	
Sample Number		Parameter	Units	LOR	Result
LB107329.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	µg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	101
		d4-1,2-dichloroethane (Surrogate)	%	-	100
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	100
Volatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB107350.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	82

d4-1,2-dichloroethane (Surrogate) % 103 d8-toluene (Surrogate) % 116 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Sample Number Result Parameter Units LOR LB107329.001 TRH C6-C9 40 <40 µg/L Surrogates Dibromofluoromethane (Surrogate) % 101 d4-1,2-dichloroethane (Surrogate) % -100 d8-toluene (Surrogate) % 95 Bromofluorobenzene (Surrogate) % 100

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Phenanthrene

Anthracene

Pyrene

Fluoranthene

Benzo(a)anthracene

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) i	n Water				Metho	d: ME-(AU)-[envjan311(p	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155826.020	LB107488.010	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil							Metho	d: ME-(AU)-	[ENV]AN312
Original	Duplicate		Parameter	Un	its LOR	Original	Duplicate	Criteria %	RPD %
SE155658.002	LB107441.014		Mercury	mg	/kg 0.05	0.000428697	60.0006627919	200	0
SE155671.002	LB107441.024		Mercury	mg	/kg 0.05	<0.05	<0.05	200	0
SE155671.012	LB107443.014		Mercury	mg	/kg 0.05	<0.05	<0.05	200	0
SE155799.001	LB107443.024		Mercury	mg	/kg 0.05	0.017903061	20.0165353535	200	0
Moisture Content							Metho	d: ME-(AU)-	(ENVJAN002
Original	Duplicate		Parameter	Un	its LOR	Original	Duplicate	Criteria %	RPD %
SE155671.010	LB107435.011		% Moisture	%v	//w 0.5	1.7	1.8	87	3
SE155678.003	LB107435.022		% Moisture	%v	//w 0.5	34	37	33	8
SE155731.004	LB107435.033		% Moisture	%v	//w 0.5	81.0	81.8	31	1
SE155810.001	LB107435.041		% Moisture	%v	//w 0.5	29.952830188	3@9.4631710362	33	2
OC Pesticides in S	oil						Method: ME-(AU)-IENVIA	N400/AN420
Original	Duplicate		Parameter	Un	its I OR	Original	Duplicate	Critoria %	RPD %
SE155671 013	L B107362 028		Heyachlorobenzene (HCB)				Duplicate	200	0 KFD //
3E133071.013	LB107302.028			ng	/kg 0.1	<0.1	0	200	0
			Lindane		/kg 0.1	<0.1	0	200	0
			Hentachlor		/kg 0.1	<0.1	0	200	0
			Aldrin		/kg 0.1	<0.1	0	200	0
			Beta BHC		/kg 0.1	<0.1	0	200	0
			Delta BHC		/kg 0.1	<0.1	0	200	0
			Hentachlor enoxide		/kg 0.1	<0.1	0	200	0
			o p'-DDF		/kg 0.1	<0.1	0	200	0
			Alpha Endosulfan		/kg 0.1	<0.1	0	200	0
			Gamma Chlordane	ma	/kg 0.2	<0.2	0	200	0
			Alpha Chlordane	ma	/kg 0.1	<0.1	0	200	0
			trans-Nonachlor	mg	/kg 0.1	<0.1	0	200	0
			p.p'-DDE	mg	/kg 0.1	<0.1	0	200	0
			Dieldrin		/kg 0.2	<0.2	0	200	0
			Endrin		/kg 0.2	<0.2	0	200	0
			o.p'-DDD		/kg 0.1	<0.1	0	200	0
			o.p'-DDT		/kg 0.1	<0.1	0	200	0
			Beta Endosulfan		/kg 0.2	<0.2	0	200	0
			p,p'-DDD	mg	/kg 0.1	<0.1	0	200	0
			p,p'-DDT	mg	/kg 0.1	<0.1	0	200	0
			Endosulfan sulphate	mg	/kg 0.1	<0.1	0	200	0
			Endrin Aldehyde	mg	/kg 0.1	<0.1	0	200	0
			Methoxychlor	mg	/kg 0.1	<0.1	0	200	0
			Endrin Ketone	mg	/kg 0.1	<0.1	0	200	0
			Isodrin	mg	/kg 0.1	<0.1	0	200	0
			Mirex	mg	/kg 0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg	/kg -	0.16	0.132	30	19
PAH (Polynuclear	Aromatic Hydrocarbor	ns) in Soil					Metho	d: ME-(AU)-	(ENVJAN420
Original	Duplicate		Parameter	Un	its LOR	Original	Duplicate	Criteria %	RPD %
SE155671.004	LB107362.014		Naphthalene	mg	/kg 0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg	/kg 0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg	/kg 0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg	/kg 0.1	<0.1	<0.1	200	0
			Acenaphthene	mg	/kg 0.1	<0.1	<0.1	200	0
			Fluorene	mg	/kg 0.1	<0.1	<0.1	200	0

0

0

0

0

0

<0.1

<0.1

<0.1

<0.1

<0.1

0.1

0.1

0.1

0.1

0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

<0.1

<0.1

<0.1

<0.1

<0.1

200

200

200

200

200

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil (contin	nued)				Meth	od: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155671.004	LB107362.014		Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	3
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.6	30	4
SE155671.010	LB107362.026		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0	200	0
			Anthracene	mg/kg	0.1	<0.1	0	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Pyrene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Chrysene	mg/kg	0.1	<0.1	0.01	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.01	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.39	30	5
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.37	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.48	30	4
PCBe in Soil							Method: ME		N400/AN42

PCBs in Soil

								· · · ·	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155671.013	LB107362.026		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.132	30	19
Total Recoverable	Metals in Soil/Waste	e Solids/Materials t	DY ICPOES				Method: ME	-(AU)-[ENV]A	N040/AN320
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155671.006	LB107477.014		Arsenic, As	mg/kg	3	<3	<3	159	0
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	4.5	4.5	41	1
			Copper, Cu	mg/kg	0.5	1.9	1.8	57	2
			Lead. Pb	ma/ka	1	4	4	54	2

Nickel, Ni

0.5

mg/kg

1.4

1.3

67

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable	Metals in Soil/Waste	e Solids/Materials b	(ICPOES (continued)				Method: ME	-(AU)-IENVIA	N040/AN32
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155671.006	LB107477.014		Zinc. Zn	ma/ka	0.5	3.6	3.3	88	8
Trace Metals (Diss	clued) in Water by I	CDMS			0.0	0.0	Meth	od: ME_(ALI)_	
	Duralise to		D	11.5%		Oniminal	Dunlingto		
Original	Duplicate		Parameter	Units	LUR	Original	Duplicate	Criteria %	RPD %
SE155817.022	LB107495.022		Arsenic, As	µg/L	1	<1	<1	200	0
			Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	µg/L	1	<1	<1	200	0
			Copper, Cu	µg/L	1	<1	<1	200	0
			Lead, Pb	µg/L	1	<1	<1	200	0
			Nickel, Ni	µg/L	1	<1	<1	200	0
			Zinc, Zn	µg/L	5	<5	<5	200	0
TRH (Total Recove	erable Hydrocarbons	s) in Soil			1.00		Meth	od: ME-(AU)-	ENVJAN40
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155671.004	LB107362.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE155671.010	LB107362.027		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE155671.014	LB107362.025		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
VOC's in Soil							Meth	od: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155671.010	L B107350 014	Monocyclic	Benzene	ma/ka	0.1	<0.1	<0.1	200	0
02100011010	23101000.011	Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		, a official	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/n-xylene	ma/ka	0.1	<0.1	<0.2	200	0
				ma/ka	0.2	<0.2	<0.2	200	0
		Debuquelie		mg/kg	0.1	<0.1	<0.1	200	0
		Surregeter		my/Kg	0.1	~0.1	>U.I		20
		Surrogates	Dibromonuorometnane (Surrogate)	nig/kg	-	4.4	3.0	50	20
				mg/kg	-	4./	3.9	50	
			as-toluene (Surrogate)	mg/kg	-	6.5	5.0	50	26
			Bromotiluorobenzene (Surrogate)	mg/kg	-	5.3	5.1	50	4
		Iotals		mg/kg	0.3	<0.3	<0.3	200	0
05455074.044	1.0407050.000			mg/kg 	0.6	<0.6	<0.6	200	0
SE1556/1.014	LB107350.022	Monocyclic	Benzehe	mg/kg	0.1	<0.1	0.01	200	0
		Aromatic		mg/kg	0.1	<0.1	0.03	200	0
1			-TD://DOD7000	malka	0.1	-0.1	0.01		0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (con	tinued)						Met	hod: ME-(AU)-	ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155671.014	LB107350.022	Monocyclic	m/p-xylene	mg/kg	0.2	<0.2	0.04	200	0
		Aromatic	o-xylene	mg/kg	0.1	<0.1	0.01	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.3	4.46	50	17
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.2	4.81	50	7
			d8-toluene (Surrogate)	mg/kg	-	5.6	5.87	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.6	5.2	50	7
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	0.05	200	0
			Total BTEX	mg/kg	0.6	<0.6	0.1	200	0
Volatile Petroleum	Hydrocarbons in Soi	il					Met	hod: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155671.010	LB107350.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	3.6	30	20
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	3.9	30	20
			d8-toluene (Surrogate)	mg/kg	-	6.5	5.0	30	26
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.3	5.1	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE155671.014	LB107350.022		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.3	4.46	30	17
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.2	4.81	30	7
			d8-toluene (Surrogate)	mg/kg	-	5.6	5.87	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.6	5.2	30	7
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0.01	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	-0.1	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil	Method: ME-(/	AU)-[ENV]AN312		
Sample Number	Parameter	Units LOR Result Expec	ted Criteria %	Recovery %
LB107441.002	Mercury	mg/kg 0.05 0.20 0.2	70 - 130	98
LB107443.002	Mercury	mg/kg 0.05 0.21 0.2	70 - 130	107

OC Pesticides in Sc	bil					Method:	ME-(AU)-[EN	/]AN400/AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB107362.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	77
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	80
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	75
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	78
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	82
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	76
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	85
OP Pesticides in So	1					Method:	ME-(AU)-[EN	/JAN400/AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB107362.002		Dichlorvos	mg/kg	0.5	2.0	2	60 - 140	101
		Diazinon (Dimpylate)	mg/kg	0.5	2.2	2	60 - 140	110
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.3	2	60 - 140	113
		Ethion	mg/kg	0.2	1.8	2	60 - 140	90
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	108
PAH (Polynuclear A	romatic Hydrocar	bons) in Soli				N	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB107362.002		Naphthalene	mg/kg	0.1	3.9	4	60 - 140	97
		Acenaphthylene	mg/kg	0.1	4.4	4	60 - 140	109
		Acenaphthene	mg/kg	0.1	4.0	4	60 - 140	100
		Phenanthrene	mg/kg	0.1	3.7	4	60 - 140	93
		Anthracene	mg/kg	0.1	4.3	4	60 - 140	107
		Fluoranthene	mg/kg	0.1	4.8	4	60 - 140	121
		Pyrene	mg/kg	0.1	4.8	4	60 - 140	120
		Benzo(a)pyrene	mg/kg	0.1	4.0	4	60 - 140	101
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	106
PCBs in Soil						Method:	ME-(AU)-[EN	/]AN400/AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB107362.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	106

Total Phenolics in Soil		Method: ME-(AU)-[
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB107483.002	Total Phenols	mg/kg	0.1	2.3	2.5	70 - 130	94	

Total Recoverable Metals in	Soil/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB107477.002	Arsenic, As	mg/kg	3	51	50	80 - 120	102
	Cadmium, Cd	mg/kg	0.3	54	50	80 - 120	109
	Chromium, Cr	mg/kg	0.3	49	50	80 - 120	98
	Copper, Cu	mg/kg	0.5	48	50	80 - 120	96
	Lead, Pb	mg/kg	1	53	50	80 - 120	105
	Nickel, Ni	mg/kg	0.5	50	50	80 - 120	101
	Zinc, Zn	mg/kg	0.5	50	50	80 - 120	100
Trace Metals (Dissolved) in V	Vater by ICPMS				N	/lethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB107495.002	Arsenic, As	µg/L	1	20	20	80 - 120	101
	Cadmium, Cd	µg/L	0.1	21	20	80 - 120	106
	Chromium, Cr	µg/L	1	22	20	80 - 120	109

SE155671 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Trace Metals (Diss	olved) in Water by	ICPMS (continued)					lethod: ME-(Al	U)- <mark>[ENV]AN</mark> 3 [,]
Sample Number	,	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB107495.002		Copper, Cu	μg/L	1	23	20	80 - 120	113
		Lead, Pb	μg/L	1	22	20	80 - 120	111
		Nickel, Ni	μg/L	1	22	20	80 - 120	112
		Zinc, Zn	µg/L	5	23	20	80 - 120	114
TRH (Total Recove	erable Hydrocarbo	ns) in Soll				1	lethod: ME-(Al	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB107362.002		TRH C10-C14	mg/kg	20	44	40	60 - 140	110
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	98
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	43	40	60 - 140	108
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	88
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
TRH (Total Recove	erable Hydrocarbo	ns) in Water					lethod: ME-(Al	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB107373.002		TRH C10-C14	µg/L	50	970	1200	60 - 140	80
		TRH C15-C28	μg/L	200	1200	1200	60 - 140	97
		TRH C29-C36	μg/L	200	1300	1200	60 - 140	109
	TRH F Bands	TRH >C10-C16 (F2)	μg/L	60	1100	1200	60 - 140	88
		TRH >C16-C34 (F3)	μg/L	500	1300	1200	60 - 140	108
		TRH >C34-C40 (F4)	μg/L	500	640	600	60 - 140	107
/OC's in Soil							lethod: ME-(Al	U)-IENVIAN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
L B107350 002	Halogenated	1 1-dichloroethene	ma/ka	0.1	1.9	2.56	60 - 140	72
201010001002	Aliphatics	1.2-dichloroethane	mg/kg	0.1	2.7	2.56	60 - 140	105
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	2.3	2.56	60 - 140	89
	Halogenated	Chlorobenzene	mg/kg	0.1	2.6	2.56	60 - 140	102
	Monocyclic	Benzene	mg/kg	0.1	2.8	2.9	60 - 140	96
	Aromatic	Toluene	mg/kg	0.1	2.3	2.9	60 - 140	81
		Ethylbenzene	mg/kg	0.1	2.6	2.9	60 - 140	88
		m/p-xylene	mg/kg	0.2	5.0	5.8	60 - 140	86
		o-xylene	mg/kg	0.1	2.6	2.9	60 - 140	90
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	6.0	5	60 - 140	120
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.4	5	60 - 140	128
		d8-toluene (Surrogate)	mg/kg	_	5.9	5	60 - 140	118
		Bromofluorobenzene (Surrogate)	mg/kg	_	6.2	5	60 - 140	124
	Trihalomethan	Chloroform	mg/kg	0.1	2.7	2.56	60 - 140	105
VOCs in Water							lethod: ME-(Al	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB107329.002	Monocyclic	Benzene	µg/L	0.5	52	45.45	60 - 140	114
	Aromatic	Toluene	µg/L	0.5	52	45.45	60 - 140	114
		Ethylbenzene	μg/L	0.5	52	45.45	60 - 140	114
		m/p-xylene	μg/L	1	100	90.9	60 - 140	113
		o-xylene	μg/L	0.5	51	45.45	60 - 140	112
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	5	60 - 140	103
	Ū	d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.2	5	60 - 140	104
		d8-toluene (Surrogate)	μg/L	-	5.5	5	60 - 140	109
		Bromofluorobenzene (Surrogate)	μg/L	-	5.1	5	60 - 140	101
Volatile Petroleum	Hydrocarbons in S	Soil					lethod: ME-(Al	U)-IENVIAN4
Sample Number		Parameter	Units	LOR.	Result	Expected	Criteria %	Recovery
LB107350 002		TRH C6-C10	ma/ka	25	<25	24 65	60 - 140	90
		TRH C6-C9	ma/ka	20	<20	23.2	60 - 140	71
	Surrogates	Dibromofluoromethane (Surrogate)	ma/ka	-	4.2	5	60 - 140	83
		d4-1.2-dichloroethane (Surrogate)	ma/ka	_	5.2	5	60 - 140	104
		d8-toluene (Surrogate)	ma/ka	-	5.4	5	60 - 140	103
		Bromofluorobenzene (Surrogate)	ma/ka	-	5.7	5	60 - 140	114
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	ma/ka	25	NVL	NVL	NVL	NVL
	1.1		····ə····ə	-				
totolile Defendances						-	tothod: If / / /	
volatile Petroleum	Hydrocarbons in v					I	Nethod: ME-(Al	U)-[ENV]AN4

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum H	lydrocarbons in V	/ater (continued)				N	lethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB107329.002		TRH C6-C10	µg/L	50	890	946.63	60 - 140	94
		TRH C6-C9	µg/L	40	730	818.71	60 - 140	89
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.1	5	60 - 140	103
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.2	5	60 - 140	104
		d8-toluene (Surrogate)	µg/L	-	5.5	5	60 - 140	109
		Bromofluorobenzene (Surrogate)	µg/L	-	5.1	5	60 - 140	101
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	580	639.67	60 - 140	91

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water				Met	thod: ME-(AU)-	ENVJAN311	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE155615.001	LB107488.004	Mercury	mg/L	0.0001	0.0062	-0.027	0.008	77

Mercury in Soil

Mercury in Soil						Metho	od: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE155645.001	LB107441.004	Mercury	mg/kg	0.05	0.23	0.06916597074	0.2	81
SE155671.003	LB107443.004	Mercury	mg/kg	0.05	NVL	NVL	NVL	NVL

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclea	r Aromatic Hydrocarb	ons) in Soil					Met	nod: ME-(Al	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE155671.002	LB107362.027		Naphthalene	mg/kg	0.1	3.8	<0.1	4	94
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.3	<0.1	4	107
			Acenaphthene	mg/kg	0.1	3.8	<0.1	4	94
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	3.8	<0.1	4	94
			Anthracene	mg/kg	0.1	4.6	<0.1	4	115
			Fluoranthene	mg/kg	0.1	5.2	<0.1	4	129
			Pyrene	mg/kg	0.1	5.1	<0.1	4	128
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	3.9	<0.1	4	98
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>3.9</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ	0.2	3.9	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.1</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.1	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.0</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.0	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	34	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	78
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	80
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	94
Total Phenolics in	n Soll						Met	nod: ME-(Al	J)-[ENV]AN289
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE155826.005	LB107483.017		Total Phenols	mg/kg	0.1	2.5	<5	2.5	95

Total Recoverable	Metals in Soil/Waste Solids/Materials	by ICPOES				Method: ME	-(AU)-[ENV]	AN040/AN320
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE155665.003	LB107477.004	Lead, Pb	mg/kg	1	56	15	50	81

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dis	solved) in Water by ICPMS					Meth	nod: ME-(Al	J)-[ENV]AN318
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE155615.001	LB107495.004	Arsenic, As	 µg/L	1	30	1.702	20	141 ④
		Cadmium, Cd	 µg/L	0.1	22	0.007	20	108
		Chromium, Cr	 µg/L	1	28	7.748	20	101
		Copper, Cu	 µg/L	1	19	0.366	20	93
		Lead, Pb	 µg/L	1	21	0.123	20	106
		Nickel, Ni	 µg/L	1	28	9.155	20	93
		Zinc, Zn	µg/L	5	28	8.804	20	94
TRH (Total Reco	verable Hydrocarbons) in Soil					Mett	nod: ME-(Al	J)-[ENV]AN403
QC Sample	Sample Number	Parameter	Units	LOR				

QC Sample	Sample Number	Parameter	Uni

15/8/2016

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Reco	verable Hydrocarbon	s) in Soll (continu	ed)				Met	hod: ME-(Al	J)-[ENV]AN403
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE155671.002	LB107362.026		TRH C10-C14	mg/kg	20	42	<20	40	105
			TRH C15-C28	mg/kg	45	<45	<45	40	95
			TRH C29-C36	mg/kg	45	<45	<45	40	80
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TBH C10-C36 Total	ma/ka	110	110	<110	-	-
			TBH C10-C40 Total	ma/ka	210	<210	<210	-	-
		TRH F Bands	TBH >C10-C16 (E2)	ma/ka	25	41	<25	40	103
		inter Bando	TBH >C10-C16 (F2) - Nanhthalene	mg/kg	25	41	<25	-	-
			TRH > C16-C34 (F3)	mg/kg	90	<90	<20	40	85
			TBH >C24 C40 (E4)	mg/kg	120	<120	<120	40	00
				ilig/kg	120	\$120	~120	-	
VOC's in Soil							Met	hod: ME-(Al	J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE155671.001	LB107350.004	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	-	-
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	-	-
		Aliphatics	Chloromethane	ma/ka	1	<1	<1	-	-
			Vinvl chloride (Chloroethene)	ma/ka	0.1	<0.1	<0.1	-	_
			Bromomethane	mg/kg	1	<1	<1		_
			Chloroothana	mg/kg	1	<1	<1	-	
			Tricklereflueremethere	mg/kg	1	<1	<1	-	-
				mg/kg			-5	-	-
			lodomethane	mg/kg	5	<5	<5	-	-
			1,1-dichloroethene	mg/kg	0.1	1.8	<0.1	2.56	71
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	-	-
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	-
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	-
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichloroethane	mg/kg	0.1	2.8	<0.1	2.56	109
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	-	-
			Dibromomethane	ma/ka	0.1	<0.1	<0.1	-	-
			Trichloroethene (Trichloroethylene -TCE)	ma/ka	0.1	1.9	<0.1	2.56	74
				mg/kg	0.1	<0.1	<0.1	-	-
				mg/kg	0.1	<0.1	<0.1	-	
			T,S-dichlorophopane	iiig/kg	0.1	-0.1	<0.1	-	-
				mg/kg	0.1	<0.1	<0.1	-	-
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-	-
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-	-
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	-	-
		Halogenated	Chlorobenzene	mg/kg	0.1	2.4	<0.1	2.56	93
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	-
			4-chlorotoluene	ma/ka	0.1	<0.1	<0.1	-	-
			1.3-dichlorobenzene	ma/ka	0.1	<0.1	<0.1	-	_
			1 4-dichlorobenzene	marka	0.1	<0.1	<0.1	_	
			1.2-dichlorobenzene	malka	0.1	-0.1	-0.1	-	
				mg/ĸġ	0.1	<u.1< td=""><td>SU.1</td><td>-</td><td>-</td></u.1<>	SU.1	-	-
				mg/kg	0.1	<0.1	<0.1	-	-
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
		Monocyclic	Benzene	mg/kg	0.1	2.8	<0.1	2.9	96
		Aromatic	Toluene	mg/kg	0.1	2.1	<0.1	2.9	72
			Ethylbenzene	mg/kg	0.1	2.1	<0.1	2.9	73
			m/p-xylene	mg/kg	0.2	4.2	<0.2	5.8	72

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter Units LOI SE155671.001 LB107350.004 Monocyclic Aromatic o-xylene mg/kg 0.1 Styrene (Vinyl benzene) Styrene (Vinyl benzene) mg/kg 0.1 Isopropylbenzene (Cumene) mg/kg 0.1	R Result 2.1 <0.1 <0.1 <0.1	t Original <0.1 <0.1	Spike 2.9	Recovery% 73
SE155671.001 LB107350.004 Monocyclic o-xylene mg/kg 0.1 Aromatic Styrene (Vinyl benzene) mg/kg 0.1 Isopropylbenzene (Cumene) mg/kg 0.1	2.1 <0.1 <0.1 <0.1	<0.1 <0.1	2.9	73
Aromatic Styrene (Vinyl benzene) mg/kg 0.1 Isopropylbenzene (Cumene) mg/kg 0.1	<0.1 <0.1 <0.1	<0.1		
Isopropylbenzene (Cumene) mg/kg 0.1	<0.1 <0.1		-	-
	<0.1	<0.1	-	-
n-propylbenzene mg/kg 0.1		<0.1	-	-
1,3,5-trimethylbenzene mg/kg 0.1	<0.1	<0.1	-	-
tert-butylbenzene mg/kg 0.1	<0.1	<0.1	-	-
1,2,4-trimethylbenzene mg/kg 0.1	<0.1	<0.1	-	-
sec-butylbenzene mg/kg 0.1	<0.1	<0.1	-	-
p-isopropyltoluene mg/kg 0.1	<0.1	<0.1	-	-
n-butylbenzene mg/kg 0.1	<0.1	<0.1	-	-
Nitrogenous Acrylonitrile mg/kg 0.1	<0.1	<0.1	-	-
Compounds 2-nitropropane mg/kg 10	<10	<10	-	-
Oxygenated Acetone (2-propanone) mg/kg 10	<10	<10	-	-
Compounds MtBE (Methyl-tert-butyl ether) mg/kg 0.1	<0.1	<0.1	-	-
Vinyl acetate mg/kg 10	<10	<10	-	-
MEK (2-butanone) mg/kg 10	<10	<10	-	-
MIBK (4-methyl-2-pentanone) mg/kg 1	<1	<1	-	-
2-hexanone (MBK) mg/kg 5	<5	<5	-	-
Polycyclic Naphthalene mg/kg 0.1	<0.1	<0.1	-	-
Sulphonated Carbon disulfide mg/kg 0.5	<0.5	<0.5	-	-
Surrogates Dibromofluoromethane (Surrogate) mg/kg -	5.5	3.8	-	110
d4-1,2-dichloroethane (Surrogate) mg/kg -	5.9	4.1	-	119
d8-toluene (Surrogate) mg/kg -	4.4	5.2	-	88
Bromofluorobenzene (Surrogate) mg/kg -	4.8	5.8	-	95
Totals Total Xylenes* mg/kg 0.3	6.3	<0.3	-	-
Total BTEX mg/kg 0.6	13	<0.6	-	-
Trihalometha Chloroform mg/kg 0.1	2.8	<0.1	2.56	108
nes Bromodichloromethane mg/kg 0.1	<0.1	<0.1	-	-
Chlorodibromomethane mg/kg 0.1	<0.1	<0.1	-	-
Bromoform mg/kg 0.1	<0.1	<0.1	-	-
Volatile Petroleum Hydrocarbons in Soil		Me	thod: ME-(A	U)-[ENV]AN433
QC Sample Sample Number Parameter Units LO	R Result	t Original	Spike	Recovery%
SE155671.001 LB107350.004 TRH C6-C10 mg/kg 25	<25	<25	24.65	83
TRH C6-C9 mg/kg 20	<20	<20	23.2	69
Surrogates Dibromofluoromethane (Surrogate) mg/kg -	3.7	3.8	-	73
d4-1,2-dichloroethane (Surrogate) mg/kg -	4.0	4.1	-	81
d8-toluene (Surrogate) mg/kg -	4.9	5.9	-	97
Bromofluorobenzene (Surrogate) mg/kg -	4.6	4.8	-	92
VPH F Benzene (F0) mg/kg 0.1	NVL	NVL	NVL	NVL
Bands TRH C6-C10 minus BTEX (F1) mg/kg 25	NVL	NVL	NVL	NVL

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	Emmanuel.Woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22282 - 12-24 Rothschild Ave, Rosebery	SGS Reference	SE155671 R0
Order Number	E22282	Date Received	08 Aug 2016
Samples	7	Date Reported	15 Aug 2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

kinty

Ly Kim Ha **Organic Section Head**

Dong Liang Metals/Inorganics Team Leader

Yusuf Kuthpudin Asbestos Analyst

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identifica	ation in soil	Method	AN602			
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	
SE155671.001	BH202_0.1-0.2	Soil	137g Sand, Rocks	06 Aug 2016	No Asbestos Found	<0.01
SE155671.003	BH206_0.35-0.45	Soil	97g Sand	06 Aug 2016	No Asbestos Found	<0.01
SE155671.005	BH207_0.3-0.4	Soil	140g Sand, Soil	06 Aug 2016	No Asbestos Found	<0.01
SE155671.007	BH208_0.1-0.2	Soil	170g Sand, Rocks	06 Aug 2016	No Asbestos Found	<0.01
SE155671.009	BH209_0.1-0.2	Soil	132g Sand, Rocks	06 Aug 2016	No Asbestos Found	<0.01
SE155671.011	BH210_0.2-0.4	Soil	180g Sand	06 Aug 2016	No Asbestos Found	<0.01
SE155671.013	BH211_0.3-0.4	Soil	178g Sand, Soil, Rocks	06 Aug 2016	No Asbestos Found	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

	CERTIFICATE OF ANALY	SIS	15	1436
Client:				
El Australia				
Suite 6.01, 55 Miller Street				
Pyrmont				
NSW 2009				
Attention: Benjamin Yuan				
Sample log in details:				
Your Reference:		E22282, Roseb	ery	
No. of samples:		1 Soil		
Date samples received / compl	eted instructions received	05/08/2016	/	08/08/2016
Analysis Details:				
Please refer to the following pa	iges for results, methodology	summary and qua	ality	control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. **Please refer to the last page of this report for any comments relating to the results.**

Report Details:

 Date results requested by: / Issue Date:
 15/08/16
 /
 12/08/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

	1	
vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	151436-1
Your Reference		QT100
	-	
Date Sampled		6/08/2016
Type of sample		Soil
Date extracted	-	09/08/2016
Date analysed	-	11/08/2016
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	115

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	151436-1
Your Reference		QT100
	-	
Date Sampled		6/08/2016
Type of sample		Soil
Date extracted	-	09/08/2016
Date analysed	-	09/08/2016
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC 29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	88

Acid Extractable metals in soil		
Our Reference:	UNITS	151436-1
Your Reference		QT100
	-	
Date Sampled		6/08/2016
Type of sample		Soil
Date prepared	-	09/08/2016
Date analysed	-	09/08/2016
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	1
Copper	mg/kg	4
Lead	mg/kg	12
Mercury	mg/kg	<0.1
Nickel	mg/kg	<1
Zinc	mg/kg	5

Client Reference:

E22282, Rosebery

Moisture		
Our Reference:	UNITS	151436-1
Your Reference		QT100
	-	
Date Sampled		6/08/2016
Type of sample		Soil
Date prepared	-	09/08/2016
Date analysed	-	10/08/2016
Moisture	%	2.5

Client Reference: E22282, Rosebery

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

Client Reference: E22282, Rosebery								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			11/08/2 016	[NT]	[NT]	LCS-8	09/08/2016
Date analysed	-			11/08/2 016	[NT]	[NT]	LCS-8	11/08/2016
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-8	113%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-8	113%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-8	111%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-8	106%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-8	114%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-8	116%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-8	112%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	116	[NT]	[NT]	LCS-8	114%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			09/08/2 016	[NT]	[NT]	LCS-8	09/08/2016
Date analysed	-			09/08/2 016	[NT]	[NT]	LCS-8	09/08/2016
TRHC10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-8	84%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-8	112%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-8	114%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-8	84%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-8	112%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-8	114%
Surrogate o-Terphenyl	%		Org-003	89	[NT]	[NT]	LCS-8	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date prepared	-			09/08/2 016	[NT]	[NT]	LCS-8	09/08/2016
Date analysed	-			09/08/2 016	[NT]	[NT]	LCS-8	09/08/2016
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	LCS-8	99%
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	LCS-8	100%
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-8	100%
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-8	96%
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-8	95%
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	LCS-8	94%
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-8	95%
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-8	97%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS			
Contact Client Address	Aimee McAllister Environmental Investigations Suite 6.01, 55 Miller Street NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015			
Telephone	02 9516 0722	Telephone	+61 2 8594 0400			
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499			
Email	Aimee.Mcallister@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com			
Project	E22282 - 12-24 Rothschild Ave Rosebery	SGS Reference	SE156129 R0			
Order Number	E22282	Date Received	18/8/2016			
Samples	8	Date Reported	26/8/2016			

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

St Alexand e Rd BC Alexand

Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Donghing

Dong Liang Metals/Inorganics Team Leader

Kamrul Ahsan Senior Chemist

ANALYTICAL RESULTS

SE156129 R0

VOCs in Water [AN433] Tested: 23/8/2016

			MW3	202M	203M	205M	GWQD1
			WATER	WATER	WATER	WATER	WATER
DADAMETED	ПОМ		17/8/2016	17/8/2016	17/8/2016	17/8/2016	17/8/2016
Benzene	ua/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µa/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	<5	<5	<5
Chloromethane	µg/L	5	<5	<5	<5	<5	<5
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	2.1	2.5
Bromomethane	µg/L	10	<10	<10	<10	<10	<10
Chloroethane	µg/L	5	<5	<5	<5	<5	<5
Trichlorofluoromethane	µg/L	1	<1	<1	<1	<1	<1
Acetone (2-propanone)	µg/L	10	<10	<10	<10	<10	<10
lodomethane	µg/L	5	<5	<5	<5	<5	<5
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	<5	<5
Allyl chloride	µg/L	2	<2	<2	<2	<2	<2
Carbon disulfide	µg/L	2	<2	<2	<2	<2	<2
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	<2	<2
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl acetate	µg/L	10	<10	<10	<10	<10	<10
MEK (2-butanone)	µg/L	10	<10	<10	<10	<10	<10
cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	8.1	8.2
Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	1.3	<0.5	<0.5	36	38
2-nitropropane	µg/L	100	<100	<100	<100	<100	<100
Bromodichloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	<5	<5	<5
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-hexanone (MBK)	µg/L	5	<5	<5	<5	<5	<5
1,2-aipromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
I etrachioroethene (Perchioroethylene,PCE)	µg/L	0.5	5.2	<0.5	4.7	64	65
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromotorm (THM)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
CIS-1,4-GICNIOFO-2-DUTENE	µg/L	1	<1	<1	<1	<1	<1
	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	<1	<1

ANALYTICAL RESULTS

SE156129 R0

VOCs in Water [AN433] Tested: 23/8/2016 (continued)

			MW3	202M	203M	205M	GWQD1
							14/4750
			WATER	VVATER	WATER		WATER
			17/8/2016	17/8/2016	17/8/2016	17/8/2016	17/8/2016
PARAMETER	UOM	LOR	SE156129.001	SE156129.002	SE156129.003	SE156129.004	SE156129.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total VOC	µg/L	10	-	-	-	-	-

ANALYTICAL RESULTS

SE156129 R0

VOCs in Water [AN433] Tested: 23/8/2016 (continued)

			GWTB1	GWQTS1	GWQR1
			WATER	WATER	WATER
PARAMETER	UOM	LOR	17/8/2016 SE156129.006	17/8/2016 SE156129.007	17/8/2016 SE156129.008
Benzene	µg/L	0.5	<0.5	[91%]	<0.5
Toluene	μg/L	0.5	<0.5	[101%]	<0.5
Ethylbenzene	μg/L	0.5	<0.5	[101%]	<0.5
m/p-xylene	μg/L	1	<1	[95%]	<1
o-xylene	µg/L	0.5	<0.5	[93%]	<0.5
Total Xylenes	µg/L	1.5	<1.5	-	<1.5
Total BTEX	µg/L	3	<3	-	<3
Naphthalene	µg/L	0.5	<0.5	-	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	-	-	-
Chloromethane	µg/L	5	-	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-	-	-
Bromomethane	µg/L	10	-	-	-
Chloroethane	µg/L	5	-	-	-
Trichlorofluoromethane	µg/L	1	-	-	-
Acetone (2-propanone)	µg/L	10	-	-	-
lodomethane	µg/L	5	-	-	-
1,1-dichloroethene	µg/L	0.5	-	-	-
Acrylonitrile	µg/L	0.5	-	-	-
Dichloromethane (Methylene chloride)	µg/L	5	-	-	-
Allyl chloride	µg/L	2	-	-	-
Carbon disulfide	µg/L	2	-	-	-
trans-1,2-dichloroethene	µg/L	0.5	-	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-	-	-
1,1-dichloroethane	µg/L	0.5	-	-	-
Vinyl acetate	µg/L	10	-	-	-
MEK (2-butanone)	µg/L	10	-	-	-
cis-1,2-dichloroethene	µg/L	0.5	-	-	-
Bromochloromethane	µg/L	0.5	-	-	-
Chloroform (THM)	µg/L	0.5	-	-	-
2,2-dichloropropane	µg/L	0.5	-	-	-
1,2-dichloroethane	µg/L	0.5	-	-	-
1,1,1-trichloroethane	µg/L	0.5	-	-	-
1,1-dichloropropene	µg/L	0.5	-	-	-
Carbon tetrachloride	µg/L	0.5	-	-	-
Dibromomethane	µg/L	0.5	-	-	-
1,2-dichloropropane	µg/L	0.5	-	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	-	-	-
2-nitropropane	µg/L	100	-	-	-
Bromodichloromethane (THM)	µg/L	0.5	-	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	-	-	-
cis-1,3-dichloropropene	µg/L	0.5	-	-	-
trans-1,3-dichloropropene	µg/L	0.5	-	-	-
1,1,2-trichloroethane	µg/L	0.5	-	-	-
1,3-dichloropropane	µg/L	0.5	-	-	-
Dibromochloromethane (THM)	µg/L	0.5	-	-	-
2-hexanone (MBK)	µg/L	5	-	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	-	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	-	-	-
Chlorobenzene	µg/L	0.5	-	-	-
Bromoform (THM)	µg/L	0.5	-	-	-
cis-1,4-dichloro-2-butene	µg/L	1	-	-	-
Styrene (Vinyl benzene)	µg/L	0.5	-	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	-	-	-
1,2,3-trichloropropane	µg/L	0.5	-	-	-
trans-1,4-dichloro-2-butene	µg/L	1	-	-	-

ANALYTICAL RESULTS

VOCs in Water [AN433] Tested: 23/8/2016 (continued)

			GWTB1	GWQTS1	GWQR1
			W/ATED		
			- WATER	- WATER	VVATER
			17/8/2016		
PARAMETER	UOM	LOR	SE156129.006	SE156129.007	SE156129.008
Isopropylbenzene (Cumene)	µg/L	0.5	-	-	-
Bromobenzene	µg/L	0.5	-	-	-
n-propylbenzene	µg/L	0.5	-	-	-
2-chlorotoluene	µg/L	0.5	-	-	-
4-chlorotoluene	µg/L	0.5	-	-	-
1,3,5-trimethylbenzene	µg/L	0.5	-	-	-
tert-butylbenzene	µg/L	0.5	-	-	-
1,2,4-trimethylbenzene	µg/L	0.5	-	-	-
sec-butylbenzene	µg/L	0.5	-	-	-
1,3-dichlorobenzene	µg/L	0.5	-	-	-
1,4-dichlorobenzene	µg/L	0.3	-	-	-
p-isopropyltoluene	µg/L	0.5	-	-	-
1,2-dichlorobenzene	µg/L	0.5	-	-	-
n-butylbenzene	µg/L	0.5	-	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-	-	-
1,2,4-trichlorobenzene	µg/L	0.5	-	-	-
Hexachlorobutadiene	µg/L	0.5	-	-	-
1,2,3-trichlorobenzene	µg/L	0.5	-	-	-
Total VOC	µg/L	10	-	-	-

SE156129 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 23/8/2016

			MW3	202M	203M	205M	GWQD1
			WATER	WATER	WATER	WATER	WATER
			-	-	-	-	-
PARAMETER	UOM	LOR	SE156129.001	SE156129.002	SE156129.003	SE156129.004	SE156129.005
TRH C6-C9	µg/L	40	<40	<40	<40	260	280
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	260	280
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	260	280

			GWQR1
			WATER
			- 17/8/2016
PARAMETER	UOM	LOR	SE156129.008
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

ANALYTICAL RESULTS

SE156129 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 19/8/2016

			MW3	202M	203M	205M	GWQD1
			WATER	WATER	WATER	WATER	WATER
			17/8/2016	17/8/2016	17/8/2016	17/8/2016	17/8/2016
PARAMETER	UOM	LOR	SE156129.001	SE156129.002	SE156129.003	SE156129.004	SE156129.005
TRH C10-C14	μg/L	50	<50	<50	<50	<50	<50
TRH C15-C28	μg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	μg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	μg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16 (F2)	μg/L	60	<60	<60	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<500	<500	<500	<500	<500
TRH C10-C36	μg/L	450	<450	<450	<450	<450	<450
TRH C10-C40	μg/L	650	<650	<650	<650	<650	<650

			GWQR1
			WATER
			-
			17/8/2016
PARAMETER	UOM	LOR	SE156129.008
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16 (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	μg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	μg/L	450	<450
TRH C10-C40	μg/L	650	<650

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 19/8/2016

			MW3	202M	203M	205M
			WATER	WATER	WATER	WATER
			- 17/8/2016	- 17/8/2016	- 17/8/2016	- 17/8/2016
PARAMETER	UOM	LOR	SE156129.001	SE156129.002	SE156129.003	SE156129.004
Naphthalene	μg/L	0.1	0.5	0.2	0.6	0.3
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Total PAH (18)	μg/L	1	<1	<1	<1	<1

Total Phenolics in Water [AN289] Tested: 24/8/2016

			MW3	202M	203M	205M
			WATER	WATER	WATER	WATER
			17/8/2016			17/8/2016
PARAMETER	UOM	LOR	SE156129.001	SE156129.002	SE156129.003	SE156129.004
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01	<0.01

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 23/8/2016

			MW3	202M	203M	205M	GWQD1
			WATER	WATER	WATER	WATER	WATER
			17/8/2016			17/8/2016	17/8/2016
PARAMETER	UOM	LOR	SE156129.001	SE156129.002	SE156129.003	SE156129.004	SE156129.005
Arsenic, As	µg/L	1	<1	4	2	<1	<1
Cadmium, Cd	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	<1	<1	1	1	1
Copper, Cu	µg/L	1	3	3	5	3	3
Lead, Pb	µg/L	1	<1	<1	<1	<1	<1
Nickel, Ni	µg/L	1	<1	<1	<1	15	15
Zinc, Zn	µg/L	5	19	<5	8	59	60

			GWQR1
			WATER
			17/8/2016
PARAMETER	UOM	LOR	SE156129.008
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	µg/L	5	<5

SE156129 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 22/8/2016

			MW3	202M	203M	205M	GWQD1
			WATER	WATER	WATER	WATER	WATER
			17/8/2016			17/8/2016	17/8/2016
PARAMETER	UOM	LOR	SE156129.001	SE156129.002	SE156129.003	SE156129.004	SE156129.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

			GWQR1
			WATER
			17/8/2016
PARAMETER	UOM	LOR	SE156129.008
Mercury	mg/L	0.0001	<0.0001

METHOD	
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is not corrected for Naphthalene.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received.

UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-OU-02 POPlan pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	Aimee McAllister	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	Aimee.Mcallister@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22282 - 12-24 Rothschild Ave Rosebery	SGS Reference	SE156129 R0	
Order Number	E22282	Date Received	18 Aug 2016	
Samples	8	Date Reported	26 Aug 2016	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Trace Metals (Dissolved) in Water by ICPMS

2 items

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Water						Me	ethod: ME-(AU)-[ENV]AN	1311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW3	SE156129.001	LB108116	17 Aug 2016	18 Aug 2016	14 Sep 2016	22 Aug 2016	14 Sep 2016	23 Aug 2016
202M	SE156129.002	LB108116	17 Aug 2016	18 Aug 2016	14 Sep 2016	22 Aug 2016	14 Sep 2016	23 Aug 2016
203M	SE156129.003	LB108116	17 Aug 2016	18 Aug 2016	14 Sep 2016	22 Aug 2016	14 Sep 2016	23 Aug 2016
205M	SE156129.004	LB108116	17 Aug 2016	18 Aug 2016	14 Sep 2016	22 Aug 2016	14 Sep 2016	23 Aug 2016
GWOD1	SE156129.005	LB108116	17 Aug 2016	18 Aug 2016	14 Sep 2016	22 Aug 2016	14 Sep 2016	23 Aug 2016
GWOR1	SE156129.008	LB108116	17 Aug 2016	18 Aug 2016	14 Sep 2016	22 Aug 2016	14 Sep 2016	23 Aug 2016
	02100120.000	Ebrootito	11 / ldg 2010	107/ldg 2010	14 000 2010	227 Aug 2010	14 000 2010	207/03/2010
PAH (Polynuclear Aromatic Hydro	carbons) in Water						Method: ME	-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW3	SE156129.001	LB108068	17 Aug 2016	18 Aug 2016	24 Aug 2016	19 Aug 2016	28 Sep 2016	25 Aug 2016
202M	SE156129.002	LB108068	17 Aug 2016	18 Aug 2016	24 Aug 2016	19 Aug 2016	28 Sep 2016	25 Aug 2016
203M	SE156129.003	LB108068	17 Aug 2016	18 Aug 2016	24 Aug 2016	19 Aug 2016	28 Sep 2016	25 Aug 2016
205M	SE156129.004	LB108068	17 Aug 2016	18 Aug 2016	24 Aug 2016	19 Aug 2016	28 Sep 2016	25 Aug 2016
GWQD1	SE156129.005	LB108068	17 Aug 2016	18 Aug 2016	24 Aug 2016	19 Aug 2016	28 Sep 2016	25 Aug 2016
GWQR1	SE156129.008	LB108068	17 Aug 2016	18 Aug 2016	24 Aug 2016	19 Aug 2016	28 Sep 2016	25 Aug 2016
Total Phenolics in Water							Method: ME	-(AU)-IENVIAN289
Comple Name	Comple No.	00 84	Compled	Dessived	Extraction Due	Evérenciad	Analysis Due	
	Sample No.	QC Rei	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW3	SE156129.001	LB108417	17 Aug 2016	18 Aug 2016	14 Sep 2016	24 Aug 2016	14 Sep 2016	25 Aug 2016
20210	SE156129.002	LB108417	17 Aug 2016	18 Aug 2016	14 Sep 2016	24 Aug 2016	14 Sep 2016	25 Aug 2016
203M	SE156129.003	LB108417	17 Aug 2016	18 Aug 2016	14 Sep 2016	24 Aug 2016	14 Sep 2016	25 Aug 2016
205M	SE156129.004	LB108417	17 Aug 2016	18 Aug 2016	14 Sep 2016	24 Aug 2016	14 Sep 2016	25 Aug 2016
Trace Metals (Dissolved) in Water	r by ICPMS						Method: ME	-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW3	SE156129.001	LB108179	17 Aug 2016	18 Aug 2016	13 Feb 2017	23 Aug 2016	13 Feb 2017	24 Aug 2016
202M	SE156129.002	LB108179	17 Aug 2016	18 Aug 2016	13 Feb 2017	23 Aug 2016	13 Feb 2017	24 Aug 2016
203M	SE156129.003	LB108179	17 Aug 2016	18 Aug 2016	13 Feb 2017	23 Aug 2016	13 Feb 2017	24 Aug 2016
205M	SE156129.004	LB108179	17 Aug 2016	18 Aug 2016	13 Feb 2017	23 Aug 2016	13 Feb 2017	24 Aug 2016
GWQD1	SE156129.005	LB108179	17 Aug 2016	18 Aug 2016	13 Feb 2017	23 Aug 2016	13 Feb 2017	24 Aug 2016
				•		· · ·		-
GWQR1	SE156129.008	LB108179	17 Aug 2016	18 Aug 2016	13 Feb 2017	23 Aug 2016	13 Feb 2017	24 Aug 2016
GWQR1	SE156129.008	LB108179	17 Aug 2016	18 Aug 2016	13 Feb 2017	23 Aug 2016	13 Feb 2017	24 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal	SE156129.008	LB108179	17 Aug 2016	18 Aug 2016	13 Feb 2017	23 Aug 2016	13 Feb 2017 Method: ME	24 Aug 2016 -(AU)-[ENV]AN403
GWQR1 TRH (Total Recoverable Hydrocal Sample Name	SE156129.008 rbons) in Water Sample No.	LB108179 QC Ref	17 Aug 2016 Sampled	18 Aug 2016 Received	13 Feb 2017 Extraction Due	23 Aug 2016 Extracted	13 Feb 2017 Method: ME Analysis Due	24 Aug 2016 -(AU)-[ENV]AN403 Analysed
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3	SE156129.008 rbons) in Water Sample No. SE156129.001	LB108179 QC Ref LB108068	17 Aug 2016 Sampled 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016	13 Feb 2017 Method: ME Analysis Due 28 Sep 2016	24 Aug 2016 -(AU)-[ENV]AN403 Analysed 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002	LB108179 QC Ref LB108068 LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016	13 Feb 2017 Method: ME Analysis Due 28 Sep 2016 28 Sep 2016	24 Aug 2016 -(AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003	LB108179 QC Ref LB108068 LB108068 LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016 18 Aug 2016 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016	13 Feb 2017 Method: ME Analysis Due 28 Sep 2016 28 Sep 2016 28 Sep 2016	24 Aug 2016 -(AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016 18 Aug 2016 18 Aug 2016 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016	13 Feb 2017 Method: ME Analysis Due 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016	24 Aug 2016 -(AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008	LB108179 QC Ref LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 Method: ME	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 -(AU)-[ENV]AN433
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No.	LB108179 QC Ref LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 17 Aug 2016 Sampled	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 Extraction Due	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 Extracted	13 Feb 2017 Method: ME: Analysis Due 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 Method: ME: Analysis Due	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 (AU)-[ENV]AN433 Analysed
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 Extracted 23 Aug 2016	13 Feb 2017 Method: ME: Analysis Due 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 Method: ME: Analysis Due 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 (AU)-[ENV]AN433 Analysed 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.002	LB108179 QC Ref LB108068	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 Extraction Due 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 Extracted 23 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME: 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 Method: ME: Analysis Due 02 Oct 2016 02 Oct 2016	24 Aug 2016 -(AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 26 Aug 2016 24 Aug 2016 -(AU)-[ENV]AN433 Analysed 25 Aug 2016 26 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 202M 203M	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.002 SE156129.003	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108002 LB108202 LB108202 LB108202	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME: Analysis Due 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 Method: ME: Analysis Due 02 Oct 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 26 Aug 2016 24 Aug 2016 (AU)-[ENV]AN433 Analysed 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 203M 205M	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.001 SE156129.002 SE156129.003 SE156129.004	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108202 LB108202 LB108202	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 Extraction Due 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 Extracted 23 Aug 2016 23 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME: Analysis Due 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 28 Sep 2016 Method: ME: Analysis Due 02 Oct 2016 02 Oct 2016 02 Oct 2016 02 Oct 2016	24 Aug 2016 -(AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 -(AU)-[ENV]AN433 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 203M 205M GWQD1	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.005 SE156129.001 SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.004 SE156129.004	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108002 LB108202 LB108202 LB108202 LB108202 LB108202 LB108202	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 Method: ME Analysis Due 02 Oct 2016 02 Oct 2016 02 Oct 2016 02 Oct 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 (AU)-[ENV]AN433 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 205M GWQD1 GWUD1	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.004 SE156129.005 SE156129.005	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108202 LB108202 LB108202 LB108202 LB108202 LB108202 LB108202	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016 02 Oct 2016 02 Oct 2016 02 Oct 2016 02 Oct 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 (AU)-[ENV]AN433 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs In Water Sample Name MW3 202M 203M 205M GWQD1 GWQD1 GWQD1 GWQD1 GWUTS1	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.003 SE156129.004 SE156129.005 SE156129.006 SE156129.006	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108202 LB108202 LB108202 LB108202 LB108202 LB108202 LB108202 LB108202	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs In Water Sample Name MW3 202M 203M 205M GWQD1 GWQD1 GWUB1 GWQR1	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.004 SE156129.005 SE156129.006 SE156129.007 SE156129.008	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108002 LB108202 LB108202 LB108202 LB108202 LB108202 LB108202 LB108202 LB108202	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs In Water Sample Name MW3 202M 203M 205M GWQD1 GWQD1 GWTB1 GWQR1 VCSI BActel Contents Con	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.003 SE156129.004 SE156129.005 SE156129.006 SE156129.006 SE156129.008	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108202	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 205M GWQD1 GWUD1	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.003 SE156129.004 SE156129.005 SE156129.006 SE156129.006 SE156129.008 in Water	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108202 LB10820 LB10820 LB108202 LB108202 LB108202 LB108202 LB108202	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME Analysis Due 28 Sep 2016 20 Ct 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 (AU)-[ENV]AN433 Analysed 25 Aug 2016 25
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 205M GWQD1 GWTB1 GWQTS1 GWQR1 Volatile Petroleum Hydrocarbons Sample Name	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.003 SE156129.001 SE156129.002 SE156129.003 SE156129.003 SE156129.004 SE156129.005 SE156129.006 SE156129.006 SE156129.008 in Water Sample No.	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108002 LB108202 LB108	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 23 Aug 2016 19 Aug 2016 23 Au	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 A
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 205M GWQD1 GWTB1 GWQTS1 GWQR1 Volatile Petroleum Hydrocarbons Sample Name MW3	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.003 SE156129.001 SE156129.002 SE156129.003 SE156129.003 SE156129.004 SE156129.005 SE156129.006 SE156129.007 SE156129.008 in Water Sample No. SE156129.001	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108002 LB108202 LB108	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 23 Aug 2016 19 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016 Method: ME	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 205M GWQD1 GWTB1 GWQTS1 GWQR1 Volatile Petroleum Hydrocarbons Sample Name MW3 202M	SE156129.008 rbons) in Water Sample No. SE156129.002 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.003 SE156129.002 SE156129.002 SE156129.003 SE156129.003 SE156129.004 SE156129.005 SE156129.006 SE156129.007 SE156129.008 in Water Sample No. SE156129.001 SE156129.001 SE156129.001	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108202 LB10820 LB108202 LB108202 LB108202 LB108202 LB1	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016 Method: ME Analysis Due 02 Oct 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 205M GWQD1 GWTB1 GWQR1 Volatile Petroleum Hydrocarbons Sample Name MW3 202M 203M	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.004 SE156129.004 SE156129.005 SE156129.001 SE156129.001 SE156129.002 SE156129.003 SE156129.006 SE156129.006 SE156129.006 SE156129.008 in Water Sample No. SE156129.001 SE156129.001 SE156129.001 SE156129.002 SE156129.002 SE156129.002 SE156129.003	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 LB108002 LB108202 LB10820 LB10820 LB10820 LB10820 LB10820 LB10820 LB10820 LB10820 LB1	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 2016	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 (AU)-[ENV]AN433 Analysed 25 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQR1 VOCs in Water Sample Name MW3 202M 203M 202M 203M 202M 203M 205M GWQD1 GWQD1 GWQD1 GWQB1 Obstant Q03M 205M GWQR1 Volatile Petroleum Hydrocarbons Sample Name MW3 202M 203M 202M 203M 202M 203M 202M	SE156129.008 rbons) in Water Sample No. SE156129.002 SE156129.003 SE156129.004 SE156129.004 SE156129.005 SE156129.008 Sample No. SE156129.001 SE156129.004 SE156129.006 SE156129.006 SE156129.008 in Water Sample No. SE156129.001 SE156129.001 SE156129.002 SE156129.002 SE156129.003 SE156129.003 SE156129.004	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108022 LB108202 LB108	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 20	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQR1 VOCs in Water Sample Name MW3 202M 203M 202M 203M 205M GWQR1 VOCs in Water Sample Name MW3 205M GWQD1 GWQTS1 GWQR1 Volatile Petroleum Hydrocarbons Sample Name MW3 202M 203M 202M 203M 202M 203M 202M 203M 205M GWQD1	SE156129.008 rbons) in Water Sample No. SE156129.002 SE156129.003 SE156129.004 SE156129.004 SE156129.005 SE156129.005 SE156129.001 SE156129.004 SE156129.004 SE156129.006 SE156129.006 SE156129.006 SE156129.008 in Water Sample No. SE156129.001 SE156129.001 SE156129.002 SE156129.003 SE156129.003 SE156129.004	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108002 LB108202 LB108	17 Aug 2016 Sampled 17 Aug 2016 17 Aug	18 Aug 2016 Received 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016 24	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 205M GWQD1 GWTB1 GWQTS1 GWQR1 Volatile Petroleum Hydrocarbons Sample Name MW3 202M 203M 202M 203M 205M GWQD1 GWTB1 Comple Name MW3 202M 203M 205M Comple Name MW3 202M 203M 205M Comple Name MW3 202M 205M Comple Name MW3 202M 203M 205M Comple Name MW3 202M 205M Comple Name MW3 205M Comple Name MW3 2	SE156129.008 rbons) in Water Sample No. SE156129.002 SE156129.003 SE156129.004 SE156129.004 SE156129.005 SE156129.001 SE156129.002 SE156129.002 SE156129.004 SE156129.004 SE156129.005 SE156129.008 in Water Sample No. SE156129.001 SE156129.001 SE156129.002 SE156129.002 SE156129.003 SE156129.004 SE156129.004 SE156129.004	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108202 LB108	17 Aug 2016 Sampled 17 Aug 2016 17 Aug	18 Aug 2016 Received 18 Aug 2016 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug 2016	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 Method: ME 02 Oct 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016
GWQR1 TRH (Total Recoverable Hydrocal Sample Name MW3 202M 203M 205M GWQD1 GWQR1 VOCs in Water Sample Name MW3 202M 203M 205M GWQD1 GWQR1 Volatile Petroleum Hydrocarbons Sample Name MW3 202M 203M 205M GWQD1 GWQR1 Volatile Petroleum Hydrocarbons Sample Name MW3 202M 203M 205M GWQD1 GWTB1 GWQTS1	SE156129.008 rbons) in Water Sample No. SE156129.001 SE156129.002 SE156129.003 SE156129.004 SE156129.005 SE156129.001 SE156129.002 SE156129.002 SE156129.004 SE156129.005 SE156129.006 SE156129.008 In Water Sample No. SE156129.001 SE156129.003 SE156129.003 SE156129.003 SE156129.004 SE156129.004	LB108179 QC Ref LB108068 LB108068 LB108068 LB108068 LB108068 LB108068 QC Ref LB108202 LB108	17 Aug 2016 Sampled 17 Aug 2016 17 Aug 20	18 Aug 2016 Received 18 Aug 2016 18 Aug 2016	13 Feb 2017 Extraction Due 24 Aug 2016	23 Aug 2016 Extracted 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 19 Aug 2016 23 Aug	13 Feb 2017 Method: ME 28 Sep 2016 28 Sep 2016 02 Oct 2016	24 Aug 2016 (AU)-[ENV]AN403 Analysed 25 Aug 2016 25 Aug 2016 25 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 24 Aug 2016 25 Aug 2016

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	MW3	SE156129.001	%	40 - 130%	52
	202M	SE156129.002	%	40 - 130%	46
	203M	SE156129.003	%	40 - 130%	50
	205M	SE156129.004	%	40 - 130%	66
d14-p-terphenyl (Surrogate)	MW3	SE156129.001	%	40 - 130%	78
	202M	SE156129.002	%	40 - 130%	68
	203M	SE156129.003	%	40 - 130%	70
	205M	SE156129.004	%	40 - 130%	92
d5-nitrobenzene (Surrogate)	MW3	SE156129.001	%	40 - 130%	52
	202M	SE156129.002	%	40 - 130%	46
	203M	SE156129.003	%	40 - 130%	52
	205M	SE156129 004	%	40 - 130%	68

VOCs in Water

VOCs in Water				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	MW3	SE156129.001	%	40 - 130%	101
	202M	SE156129.002	%	40 - 130%	94
	203M	SE156129.003	%	40 - 130%	98
	205M	SE156129.004	%	40 - 130%	100
	GWQD1	SE156129.005	%	40 - 130%	110
	GWTB1	SE156129.006	%	40 - 130%	94
	GWQTS1	SE156129.007	%	40 - 130%	107
	GWQR1	SE156129.008	%	40 - 130%	96
d4-1,2-dichloroethane (Surrogate)	MW3	SE156129.001	%	40 - 130%	127
	202M	SE156129.002	%	40 - 130%	127
	203M	SE156129.003	%	40 - 130%	124
	205M	SE156129.004	%	40 - 130%	128
	GWQD1	SE156129.005	%	40 - 130%	126
	GWTB1	SE156129.006	%	40 - 130%	121
	GWQTS1	SE156129.007	%	40 - 130%	117
	GWQR1	SE156129.008	%	40 - 130%	120
d8-toluene (Surrogate)	MW3	SE156129.001	%	40 - 130%	88
	202M	SE156129.002	%	40 - 130%	94
	203M	SE156129.003	%	40 - 130%	86
	205M	SE156129.004	%	40 - 130%	85
	GWQD1	SE156129.005	%	40 - 130%	88
	GWTB1	SE156129.006	%	40 - 130%	90
	GWQTS1	SE156129.007	%	40 - 130%	89
	GWQR1	SE156129.008	%	40 - 130%	92
Dibromofluoromethane (Surrogate)	MW3	SE156129.001	%	40 - 130%	118
	202M	SE156129.002	%	40 - 130%	116
	203M	SE156129.003	%	40 - 130%	121
	205M	SE156129.004	%	40 - 130%	117
	GWQD1	SE156129.005	%	40 - 130%	116
	GWTB1	SE156129.006	%	40 - 130%	111
	GWQTS1	SE156129.007	%	40 - 130%	106
	GWQR1	SE156129.008	%	40 - 130%	111

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hydrocarbons in Water				Method: M	IE-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	MW3	SE156129.001	%	40 - 130%	95
	202M	SE156129.002	%	40 - 130%	95
	203M	SE156129.003	%	40 - 130%	98
	205M	SE156129.004	%	40 - 130%	94
	GWQD1	SE156129.005	%	40 - 130%	95
	GWQR1	SE156129.008	%	40 - 130%	96
d4-1,2-dichloroethane (Surrogate)	MW3	SE156129.001	%	60 - 130%	120
	202M	SE156129.002	%	60 - 130%	120
	203M	SE156129.003	%	60 - 130%	126
	205M	SE156129.004	%	60 - 130%	121
	GWQD1	SE156129.005	%	60 - 130%	119
	GWOR1	SE156129 008	%	60 - 130%	120

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Water (continued) Method: ME-(AU)-[ENV]AN433 Sample Nam Sample Number Units Criteria Recovery % Parameter d8-toluene (Surrogate) MW3 SE156129.001 % 40 - 130% 90 202M SE156129.002 % 40 - 130% 101 203M SE156129.003 % 40 - 130% 91 205M SE156129.004 % 40 - 130% 89 GWQD1 90 SE156129.005 % 40 - 130% SE156129.008 40 - 130% GWOR1 % 92 Dibromofluoromethane (Surrogate) MW3 SE156129.001 % 40 - 130% 114 202M SE156129.002 % 40 - 130% 112 203M SE156129.003 40 - 130% 117 % 205M SE156129.004 % 40 - 130% 113 GWQD1 SE156129.005 % 40 - 130% 112 GWQR1 SE156129.008 40 - 130% % 111

METHOD BLANKS

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB108116.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Sample Number		Parameter	Units	LOR	Result
LB108068.001		Naphthalene	µg/L	0.1	<0.1
		2-methylnaphthalene	μg/L	0.1	<0.1
		1-methylnaphthalene	μg/L	0.1	<0.1
		Acenaphthylene	μg/L	0.1	<0.1
		Acenaphthene	μg/L	0.1	<0.1
		Fluorene	μg/L	0.1	<0.1
		Phenanthrene	μg/L	0.1	<0.1
		Anthracene	μg/L	0.1	<0.1
		Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1	
		Benzo(a)anthracene	μg/L	0.1	<0.1
		Chrysene	μg/L	0.1	<0.1
		Benzo(a)pyrene	μg/L	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
		Dibenzo(ah)anthracene	μg/L	0.1	<0.1
		Benzo(ghi)perylene	μg/L	0.1	<0.1
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	110
		2-fluorobiphenyl (Surrogate)	%	-	102
		d14-p-terphenyl (Surrogate)	%	-	118
Total Phenolics in Water				Meth	od: ME-(AU)-[ENV]AN289
Sample Number		Parameter	Units	LOR	Result
LB108417.001		Total Phenols	mg/L	0.01	<0.01

Trace Metals (Dissolved) in Water by ICPMS				Method: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB108179.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5
TRH (Total Recoverable Hydrocarbons) in Water				Method: ME-(AU)-[ENV]AN403

mg/L

Sample Number	Parameter	Units	LOR	Result
LB108068.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TRH C37-C40	µg/L	200	<200

VOCs in Water				Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB108202.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3
		Bromomethane	µg/L	10	<10
		Chloroethane	µg/L	5	<5
		Trichlorofluoromethane	µg/L	1	<1
		Iodomethane	µg/L	5	<5

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OCs in Water (contine	ued)			Meth	nod: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB108202.001	Halogenated Aliphatics	1,1-dichloroethene	µg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	µg/L	5	<5
		Allvl chloride	ug/L	2	<2
		trans-1.2-dichloroethene	ug/L	0.5	<0.5
		1 1-dichloroethane		0.5	<0.5
		cis-1 2-dichloroethane	pg/L	0.5	<0.5
		Branableremethere	μ9/2	0.5	<0.5
		Biomocnioromethane	μg/L	0.5	<0.5
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	μg/L	0.5	<0.5
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene, TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	µg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1.1.1.2-tetrachloroethane	ug/l	0.5	<0.5
		cis-1 4-dichloro-2-butene		1	<1
			pg/L	0.5	<0.5
			μ9/L	0.5	-0.5
		1,2,3-tricnioropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1.2-dichlorobenzene	ua/L	0.5	<0.5
		1.2.4-trichlorobenzene		0.5	<0.5
		1 2 3 trichlorobenzene		0.5	<0.5
	Mononvolio Aromotio	Bonzono	μ9/μ	0.5	<0.5
		Taluana	μg/ε	0.5	<0.5
	Hydrocarbons		μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	µg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	µg/L	0.5	<0.5
		p-isopropyltoluene	µg/L	0.5	<0.5
		n-butylbenzene	ua/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile		0.5	<0.5
		Acetone (2-propagone)		10	<10
	oxygenated compounds	MtPE (Motbul tort butul other)	pg/L		-2
			μ9/L	2	~2
			μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	μg/L	2	<2
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	112
		d4-1,2-dichloroethane (Surrogate)	%	-	123
		d8-toluene (Surrogate)	%	-	82
		Bromofluorobenzene (Surrogate)	%	-	97
	Trihalomethanes	Chloroform (THM)		0.5	<0.5
	alernet lance	Bromodichloromethane (THM)	<u>руг</u> цо//	0.5	<0.5
			μg/L	0.0	~v.o

VOCs in Water (continued)

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB108202.001	Trihalomethanes	Dibromochloromethane (THM)	µg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5
Volatile Petroleum Hydrocarbons in Water				Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB108202.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	108
		d4-1,2-dichloroethane (Surrogate)	%	-	116
		d8-toluene (Surrogate)	%	-	85
		Bromofluorobenzene (Surrogate)	%	-	98

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) i	n Water				Metho	od: ME-(AU)-[ENV]AN311(F	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE156145.027	LB108116.014	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0
SE156201.002	LB108116.018	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

ce Metals (Dissolved) in Water by ICPMS

Trace Metals (Diss	olved) in Water by ICPMS					Meth	od: ME-(AU)-	[ENV]AN318
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE156129.004	LB108179.014	Arsenic, As	µg/L	1	<1	<1	177	0
		Cadmium, Cd	µg/L	0.1	<0.1	<0.1	167	0
		Chromium, Cr	µg/L	1	1	1	111	6
		Copper, Cu	µg/L	1	3	3	51	2
		Lead, Pb	µg/L	1	<1	<1	118	0
		Nickel, Ni	µg/L	1	15	15	22	0
		Zinc, Zn	μg/L	5	59	60	23	1
SE156201.002	LB108179.024	Arsenic, As	μg/L	1	<1	<1	200	0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Chromium, Cr	μg/L	1	<1	<1	200	0
		Copper, Cu	μg/L	1	2	1	85	12
		Lead, Pb	μg/L	1	<1	<1	200	0
		Nickel, Ni	µg/L	1	<1	<1	200	0
		Zinc, Zn	μg/L	5	8	8	76	1

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB108068.002		Naphthalene	µg/L	0.1	30	40	60 - 140	74
		Acenaphthylene	µg/L	0.1	36	40	60 - 140	90
		Acenaphthene	µg/L	0.1	36	40	60 - 140	91
		Phenanthrene	 µg/L	0.1	44	40	60 - 140	109
		Anthracene	 µg/L	0.1	41	40	60 - 140	103
		Fluoranthene	 µg/L	0.1	40	40	60 - 140	101
		Pyrene	 µg/L	0.1	42	40	60 - 140	105
		Benzo(a)pyrene	 µg/L	0.1	41	40	60 - 140	101
	Surrogates	d5-nitrobenzene (Surrogate)	 µg/L	-	0.4	0.5	40 - 130	80
		2-fluorobiphenyl (Surrogate)	 µg/L	-	0.4	0.5	40 - 130	84
		d14-p-terphenyl (Surrogate)	µg/L	-	0.6	0.5	40 - 130	112
Total Phenolics in Wa	iter					N	lethod: ME-(A	U)-[ENV]AN289
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %

Sample Number	Parameter	Units	s LOR	Result	Expected	Criteria %	Recovery %
LB108417.002	Total Phenols	mg/L	0.01	0.23	0.25	80 - 120	93

Trace Metals (Dis	solved) in Water by	ICPMS					Method: ME-(A	U)-[ENV]AN318
Sample Number	r	Parameter	Ur	its LO	R Result	Expected	Criteria %	Recovery %
LB108179.002		Arsenic, As	μg/l	L 1	20	20	80 - 120	99
		Cadmium, Cd	μg/l	L 0.1	22	20	80 - 120	110
		Chromium, Cr	μg/l	L 1	23	20	80 - 120	113
		Copper, Cu	μg/l	L 1	23	20	80 - 120	117
		Lead, Pb	μg/l	L 1	22	20	80 - 120	112
		Nickel, Ni	μg/l	L 1	22	20	80 - 120	112
		Zinc, Zn	μg/l	L 5	22	20	80 - 120	111
TRH (Total Recov	erable Hydrocarbo	ns) in Water				ļ	Method: ME-(A	U)-[ENV]AN403
Sample Number	r	Parameter	Ur	nits LOI	R Result	Expected	Criteria %	Recovery %
LB108068.002		TRH C10-C14	μg/l	L 50	980	1200	60 - 140	81
		TRH C15-C28	μg/l	L 200	1100	1200	60 - 140	92
		TRH C29-C36	μg/l	L 200	960	1200	60 - 140	80
	TRH F Bands	TRH >C10-C16 (F2)	μg/l	L 60	1100	1200	60 - 140	88
		TRH >C16-C34 (F3)	μg/l	L 500	1100	1200	60 - 140	92
		TRH >C34-C40 (F4)	μg/l	L 500	<500	600	60 - 140	80
VOCs in Water						ļ	Method: ME-(A	U)-[ENV]AN433
Sample Number	r	Parameter	Ur	its LO	R Result	Expected	Criteria %	Recovery %
LB108202.002	Halogenated	1,1-dichloroethene	μg/l	L 0.5	51	45.45	60 - 140	113
	Aliphatics	1,2-dichloroethane	μg/l	L 0.5	51	45.45	60 - 140	112
		Trichloroethene (Trichloroethylene, TCE)	μg/l	L 0.5	51	45.45	60 - 140	111
	Halogenated	Chlorobenzene	μg/l	L 0.5	51	45.45	60 - 140	111
	Monocyclic	Benzene	μg/l	L 0.5	51	45.45	60 - 140	112
	Aromatic	Toluene	μg/l	L 0.5	51	45.45	60 - 140	111
		Ethylbenzene	μg/l	L 0.5	51	45.45	60 - 140	112
		m/p-xylene	μg/l	L 1	100	90.9	60 - 140	111
		o-xylene	μg/l	L 0.5	51	45.45	60 - 140	111
	Surrogates	Dibromofluoromethane (Surrogate)	μg/l	L	4.8	5	60 - 140	96
		d4-1,2-dichloroethane (Surrogate)	hg/l	L	4.8	5	60 - 140	97
		d8-toluene (Surrogate)	μg/l	L	4.6	5	60 - 140	91
		Bromofluorobenzene (Surrogate)	μg/l	L -	4.8	5	60 - 140	96
	Trihalomethan	Chloroform (THM)	μg/l	L 0.5	51	45.45	60 - 140	111
Volatile Petroleum	Hydrocarbons in V	Vater				I	Method: ME-(A	U)-[ENV]AN433
Sample Number	r	Parameter	Ur	nits LOI	R Result	Expected	Criteria %	Recovery %
LB108202.002		TRH C6-C10	μg/l	L 50	970	946.63	60 - 140	102
		TRH C6-C9	μg/l	L 40	800	818.71	60 - 140	97
	Surrogates	Dibromofluoromethane (Surrogate)	μg/l	L -	4.8	5	60 - 140	95
		d4-1,2-dichloroethane (Surrogate)	μg/l	L –	4.8	5	60 - 140	96
		d8-toluene (Surrogate)	μg/l	L –	5.4	5	60 - 140	108
		Bromofluorobenzene (Surrogate)	10/	_	5.2	5	60 - 140	104

50

µg/L

660

639.67

60 - 140

VPH F Bands

TRH C6-C10 minus BTEX (F1)

104

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water				Met	hod: ME-(AU)-	[ENV]AN311	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE156129.001	LB108116.004	Mercury	mg/L	0.0001	0.0066	<0.0001	0.008	83

Total Phenolics in Water

Total Phenolics in Water						Meth	od: ME-(AU)-[ENV]AN289
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE156214.001	LB108417.014	Total Phenols	mg/L	0.01	0.29	<0.05	0.25	113

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Di	ssolved) in Water by ICPMS				Met	hod: ME-(Al	J)-[ENV]AN318	
QC Sample	Sample Number	Parameter	Units	s LOR	Result	Original	Spike	Recovery%
SE156117.001	LB108179.004	Arsenic, As	µg/L	1	20	<1	20	97
		Cadmium, Cd	µg/L	0.1	22	0.4	20	109
		Chromium, Cr	µg/L	1	21	<1	20	101
		Copper, Cu	µg/L	1	22	5	20	85
		Lead, Pb	µg/L	1	22	<1	20	108
		Nickel, Ni	µg/L	1	97	83	20	69 (5)
		Zinc, Zn	μg/L	5	250	240	20	46 (5)

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

152056

Client:			
El Australia			
Suite 6.01, 55 Miller Street			
Pyrmont			
NSW 2009			
Attention: A McAllister			
Sample log in details:			
Your Reference:	E22282, Roseber	·у	
No. of samples:	1 Water	_	
Date samples received / completed instructions received	18/08/2016	/	18/08/2016
Analysis Details:			

CERTIFICATE OF ANALYSIS

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 25/08/16
 / 23/08/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference:	UNITS	152056-1
Your Reference		GWQT1
	-	
Date Sampled		17/08/2016
Type of sample		Water
Date extracted	-	18/08/2016
Date analysed	-	19/08/2016
TRHC6 - C9	µg/L	130
TRHC6 - C10	µg/L	130
TRHC6 - C10 less BTEX (F1)	µg/L	130
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	105
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	104

svTRH (C10-C40) in Water		
Our Reference:	UNITS	152056-1
Your Reference		GWQT1
	-	
Date Sampled		17/08/2016
Type of sample		Water
Date extracted	-	19/08/2016
Date analysed	-	19/08/2016
TRHC 10 - C14	µg/L	<50
TRHC 15 - C28	µg/L	<100
TRHC29 - C36	µg/L	<100
TRH>C10 - C16	µg/L	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH>C16 - C34	µg/L	<100
TRH>C34 - C40	µg/L	<100
Surrogate o-Terphenyl	%	91

HM in water - dissolved		
Our Reference:	UNITS	152056-1
Your Reference		GWQT1
	-	
Date Sampled		17/08/2016
Type of sample		Water
Date prepared	-	19/08/2016
Date analysed	-	19/08/2016
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	µg/L	1
Copper-Dissolved	µg/L	2
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	13
Zinc-Dissolved	µg/L	52

Client Reference: E22282, Rosebery

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.

Client Reference: E22282, Rosebery								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II % RPD		
Date extracted	-			18/08/2 016	[NT]	[NT]	LCS-W4	18/08/2016
Date analysed	-			19/08/2 016	[NT]	[NT]	LCS-W4	19/08/2016
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W4	114%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W4	114%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W4	120%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W4	126%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W4	106%
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W4	109%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W4	108%
Naphthalene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	106	[NT]	[NT]	LCS-W4	105%
Surrogate toluene-d8	%		Org-016	96	[NT]	[NT]	LCS-W4	100%
Surrogate 4-BFB	%		Org-016	102	[NT]	[NT]	LCS-W4	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II % RPD		
Date extracted	-			19/08/2 016	[NT]	[NT]	LCS-W4	19/08/2016
Date analysed	-			19/08/2 016	[NT]	[NT]	LCS-W4	19/08/2016
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W4	90%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W4	86%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W4	104%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W4	90%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W4	86%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W4	104%
Surrogate o-Terphenyl	%		Org-003	82	[NT]	[NT]	LCS-W4	105%
QUALITY CONTROL HM in water - dissolved	UNITS	PQL	METHOD	Blank				
Date prepared	-			19/08/2				
Date analysed	_			016 19/08/2				
Arsenic-Dissolved	µg/L	1	Metals-022	016 <1				
Cadmium-Dissolved	ug/l	0.1	ICP-MS Metals-022	<0.1				
Chromium Dissolved	µg/⊏	4	ICP-MS					
Chromium-Dissoived	µg/L		ICP-MS	<1				
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1				
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1				
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05				

Client Reference: E22282, Rosebery							
QUALITYCONTROL	UNITS	PQL	METHOD	Blank			
HM in water - dissolved							
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1			
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1			
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate	Spike Sm#	Spike % Recovery
HM in water - dissolved				Base+D	Ouplicate + %RPD		
Date prepared	-		[NT]		[NT]	LCS-W3	19/08/2016
Date analysed	-		[NT]		[NT]	LCS-W3	19/08/2016
Arsenic-Dissolved	µg/L		[NT]		[NT]	LCS-W3	96%
Cadmium-Dissolved	µg/L		[NT]		[NT]	LCS-W3	97%
Chromium-Dissolved	µg/L		[NT]		[NT]	LCS-W3	92%
Copper-Dissolved	µg/L		[NT]		[NT]	LCS-W3	90%
Lead-Dissolved	µg/L		[NT]		[NT]	LCS-W3	97%
Mercury-Dissolved	µg/L		[NT]		[NT]	LCS-W3	101%
Nickel-Dissolved	µg/L		[NT]		[NT]	LCS-W3	93%
Zinc-Dissolved	μg/L		[NT]		[NT]	LCS-W3	93%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

APPENDIX F QA/QC Assessment

F1 QUALITY CONTROL PROGRAM

F1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this ASDI, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table F-1**.

QA/QC Measures	Data Quality Indicators	Have the DQIs Been Met?	Comment
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR). Results are less than 20 times the LOR and the RPD is less than 50%. Heterogeneous materials or volatile compounds are encountered.	Yes	Calculated RPD values between primary and duplicate samples are presented in Table F-2 and generally conformed with the acceptance criteria, as discussed in Section F2 .
Accuracy – A quantitative measure of the closeness of reported data to the "true" value	Data accuracy would be assessed through the analysis of: Method blanks, which are analysed for the analytes targeted in the primary samples. Matrix spike and matrix spike duplicate sample sets. Laboratory control samples. Calibration of instruments against known standards.	Yes	As detailed in Section F3 , method blanks, matrix spikes and laboratory control samples generally conformed to the data acceptance criteria.

Table F-1 Sampling Data Quality Indicators

QA/QC Measures	Data Quality Indicators	Have the DQIs Been Met?	Comment	
Representativeness – The confidence (expressed qualitatively) that data are representative of each medium present onsite	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following: Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts.	Yes	As discussed in Table 7-3 and Table 7-4 , the collection methodologies, handling, storage and preservation techniques utilised is considered to be satisfactory.	
	Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities.			
	The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).			
Completeness – A measure of the amount of useable data from a data collection activity	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that: Standard operating procedures (SOPs) for sampling protocols were adhered to	Yes	COC and SRA forms are attached in Appendix D . Although a small number of discrepancies were identified, the data generally confirms that the analytical results for soil and groundwater laboratory testing were valid and useable for interpretation	
	Copies of all COC documentation are presented, reviewed and found to be properly completed.			
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.		purposes.	
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.	Yes	SOPs were adhered to during each soil and groundwater sampling event.	
analytical event	In addition the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.			

F1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_o - C_R|}{[(C_o + C_R)/2]} \times 100$$

Where:

 C_{O} = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

F2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) soil and groundwater samples collected during the investigations were as follows:

- Blind field duplicates;
- Inter-laboratory duplicates;
- Trip blanks;
- Trip spikes; and
- Rinsate blanks.

Analytical results for tested soil and groundwater QA/QC samples, including calculated RPD values between primary and duplicate samples, are presented in **Table F-2**.

F2.1 SOIL INVESTIGATION

F2.1.1 Blind Field Duplicates

One blind field duplicate (BFD) soil sample was collected.

The preparation of the BFD sample (QD100 from primary sample BH206_0.35-0.45) involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD soil sample was analysed for TRHs, BTEX, selected heavy metals and calculated RPD values were found to be within the Data Acceptance Criteria (**Appendix G**, **Table QC5**).

F2.1.2 Inter-Laboratory Duplicate

Sample QT100 was collected as an inter-laboratory duplicate (ILD) of the primary sample BH206_0.35-0.45.

The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX, selected heavy metals. The calculated RPD value exceeded the Data Acceptance Criteria (50% RPD, **Appendix G, Table QC5**) for copper (62.3%) and zinc (63.16%) due to material heterogeneity.

Furthermore, soil samples were placed immediately into jars following sampling to reduce the loss of volatiles from samples. Analytical results indicated that the samples collected were representative of the soils present at respective sampling locations.

F2.1.3 Trip Blank

One trip blank (TB) sample was prepared and analysed by the primary laboratory for BTEX and Naphthalene. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

F2.1.4 Trip Spike

One trip spike (TS) sample was submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

F2.1.5 Rinsate Blank

One rinsate blank (RB) sample QR100 was submitted to the primary laboratory for PCBs analysis, the results for which were reported below laboratory LOR; therefore, it was concluded that decontamination procedures performed during the field works had been effective.

F2.2 GROUNDWATER INVESTIGATION

F2.2.1 Blind Field Duplicates

One groundwater BFD samples was collected. Sample GWQD1 was collected from the primary sample BH205M.

The preparation of BFD sample involved the decanting of the groundwater collected from the respective monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. Sample mixing did not occur prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFDs were analysed for TRHs, BTEX, selected heavy metals. The RPD values calculated for all the analytes tested were found to be within the Data Acceptance Criteria (DAC).

F2.2.2 Inter-Laboratory Duplicate

One ILD sample was collected in total during groundwater sampling. Primary sample BH205M was split to form ILD sample GWQT1.

The preparation of a groundwater ILD sample was identical to the BFD sample as described above and also analysed for TRHs, BTEX, selected heavy metals. The RPD values calculated for the ILD sample was found to be within the Data Acceptance Criteria, with the exception of TRH fraction F1 (66.67%). The reported groundwater concentration for TRH fraction F1 was within ten times the laboratory LOR and was deemed to be acceptable. Despite the discrepancies, overall data quality was considered to be acceptable, in accordance with the laboratory DQOs presented in **Appendix L, Table QC5**.

F2.2.3 Trip Blanks

One trip blank (TB) sample (Trip Blank, GWQTB1), prepared by the primary laboratory, was analysed for BTEX by the primary laboratory during groundwater testing. TB results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

F2.2.4 Trip Spikes

One TS sample (GWTS1) was submitted to the primary laboratory for BTEX analysis, the results for which were all reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

F2.2.5 Rinsate Blanks

One RB sample (GWQR1) was submitted to the primary laboratory for TRHs, BTEX and selected heavy metals analyses. Analytical results were reported below the laboratory LOR for most analytes, with the exception of copper (1 μ g/L). The reported result was at the LOR of 1ug/L and not significant.

F3 LABORATORY QA/QC

F3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix G**), respective tests would be accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix G**.

F3.2 SAMPLE HOLDING TIMES

Sample holding times were generally within the laboratory DQOs, which were consistent with standard environmental protocols as tabulated in **Appendix G**, **Tables QC1** and **QC2**.

F3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in **Appendix G**, **Tables QC3** and **QC4**.

Laboratory PQLs are below the adopted assessment criteria for soil and water. The methods employed by the laboratory are acceptable.

F3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

F3.5 LABORATORY DUPLICATE SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches showed calculated RPDs that were within acceptable ranges and conformed to the DAC.

F3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples for the analysis batches were within acceptable ranges and conformed to the DAC.

F3.7 MATRIX SPIKES

All matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DAC, with the exception:

- Zinc (141%) in trip spike sample LB107495.004 due to matrix interference; and
- Nickel (69%) and Zinc (46%) in trip spike LB108179.004 due to significant concentration of the analyte.

F3.8 SURROGATE

Recovery results for all surrogate samples conformed to the DAC.

F3.9 CONCLUDING REMARK

Based on the laboratory QA/QC results EI considers that although a small number of discrepancies were identified, which in most cases could be attributed to the non-homogenous nature of the submitted samples, the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

Table F-2 Summary of QA/QC results for investigation samples

ч Б			TRH					BT	ΈX							Heavy	Metals			
Sample identificatio	Sampled Date	Description	41*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	eue/x-d/ш	o-xylene	Arsenic	Cadmium	Chromium (Total)	Copper	Геад	Mercury	Nickel	Zinc
Intra-laboratory Du	Iplicate																			
BH206_0.35-0.45	6/8/2016	Fill Material	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	<3	<0.3	0.8	2.1	10	<0.05	<0.5	2.6
QD100	6/8/2016	Replicate of BH206_0.35-0.45	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	<3	<0.3	0.9	1.5	7	< 0.05	<0.5	2
	RF	2D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.76	33.33	35.29	0.00	0.00	26.09
BH205M	17/8/2016	Groundwater	260	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	<1	<0.1	1	3	<1	<0.1	15	59
GWQD1	17/8/2016	Replicate of BH205M	280	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	<1	<0.1	1	3	<1	<0.1	15	60
RPD		7.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.68	
Inter-laboratory Du	plicate			-		-									-			-		
BH206_0.35-0.45	6/8/2016	Fill Material	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	<3	<0.3	0.8	2.1	10	<0.05	<0.5	2.6
QT100	6/8/2016	Replicate of BH206_0.35-0.45	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<2	<1	<4	<0.4	1	4	12	<0.1	<1	5
	RF	20	0.00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.22	62.30	18.18	NA	NA	63.16
BH205M	17/8/2016	Groundwater	260	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	<1	<0.1	1	3	<1	<0.1	15	59
GWQT1	17/8/2016	Replicate of BH205M	130	<50	<100	<100	<1	<1	<1	<2	<1	<0.5	<1	<0.1	1	2	<1	<0.05	13	52
	RF	2D	66.67	NA	NA	NA	NA	NA	NA	NA	0.00	0.00	0.00	0.00	0.00	40.00	0.00	NA	14.29	12.61
Trip Spike				-		-									-			-		
QTS100	6/8/2016	Trip blank - soil	-	-	-	-	[84%]	[87%]	[85%]	N.A.	[83%]	[90%]	-	-	-	-	-	-	-	-
GWTS1	17/8/2016	De-ionised water	-	-	-	-	[91%]	[101%]	[101%]	N.A.	[95%]	[93%]	-	-	-	-	-	-	-	-
Trip Blanks																				
QTB100	6/8/2016	Trip blank - soil	-	-	-	-	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	-	-	-	-	-	-	-	-
GWTB1	17/8/2016	De-ionised water	-	-	<u> </u>	-	<0.5	<0.5	<0.5	<1.5	<1	<0.5	-	-	-	-	-	-	-	-
Rinsate Blanks																1 .				
QR100	6/8/2016	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	< 0.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5
QK100	17/8/2016	De-Ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	<1	<0.1	<1	1	<1	<0.1	<1	<5

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit. 82.35

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE:

All soil results are reported in mg/kg . All water results are reported in μ g/L.

 * - to obtain F1 subtract the sum of BTEX concentrations from the C_6-C_{10} fraction

** - to obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction

APPENDIX G Laboratory QA/AC Policies and DQOs

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil					
Parameter	Container	Preservation	Maximum Holding Time		
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months		
Mercury	Glass with Teflon Lid	Nil	28 days		
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days		
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days		
Phenols	Glass with Teflon Lid	4°C ¹	14 days		
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days		
Asbestos	Sealed Plastic Bag	Nil	N/A		

Table QC2 - Containers, Preservation Requirements and Holding Times - Water					
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time		
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months		
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months		
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days		
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4°C ¹	28 days		

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil							
Parameter	Unit	PQL	Method Reference				
Metals in Soil							
Arsenic - As ¹	mg / kg	1	USEPA 200.7				
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7				
Chromium - Cr ¹	mg / kg	1	USEPA 200.7				
Copper - Cu ¹	mg / kg	1	USEPA 200.7				
Lead - Pb ¹	mg / kg	1	USEPA 200.7				
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A				
Nickel - Ni ¹	mg / kg	1	USEPA 200.7				
Zinc - Zn ¹	mg / kg	1	USEPA 200.7				
Total Petroleum Hydrocarbons (TPHs) in Soil							
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260				
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000				
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000				
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000				
	BTEX in Soil						
Benzene	mg / kg	1	USEPA 8260				
Toluene	mg / kg	1	USEPA 8260				
Ethylbenzene	mg / kg	1	USEPA 8260				
m & p Xylene	mg / kg	2	USEPA 8260				
o- Xylene	mg / kg	1	USEPA 8260				
C	ther Organic C	ontaminants ir	ı Soil				
PAHs	mg / kg	0.05-0.2	USEPA 8270				
CHCs	mg / kg	1	USEPA 8260				
VOCs	mg / kg	1	USEPA 8260				
SVOCs	mg / kg	1	USEPA 8260				
OCPs	mg / kg	0.1	USEPA 8140, 8080				
OPPs	mg / kg	0.1	USEPA 8140, 8080				
PCBs	mg / kg	0.1	USEPA 8080				
Phenolics	mg / kg	5	APHA 5530				
	As	bestos					
Asbestos	mg / kg	Presence / Absence	AS4964-2004				

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method		
	Heavy	Metals		Chlorinated Hydrocarbons (CHCs)					
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B		
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B		
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B		
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B		
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B		
Cobalt - Co	μq/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B		
Copper - Cu	ua/L	1	USEPA 200.8	1.1.2-trichloroethane	ug/L	1	USEPA 8260B		
Lead - Pb	ua/l	1	USEPA 200.8	Hexachloroethane	ug/l	10	USEPA 8270D		
Mercury - Ha	ua/L	0.5	USEPA 7471A	Other CHCs	ug/L	1	USEPA 8260B		
Molvbdenum - Mo	µg/=	1	USEPA 200.8	Volatile Orga	nic Con	npounds	s (VOCs)		
Nickel - Ni	µg/=	1	USEPA 200.8	Aniline	ua/l	10	USEPA 8260B		
Selenium - Se	µg/L	1	USEPA 200.8	2 4-dichloroaniline	μg/L	10	USEPA 8260B		
Silver - Ag	µg/L µg/l	1	USEPA 200.8	3 4-dichloroaniline	µg/L	10	USEPA 8260B		
Tin (inorg.) - Sn	µg/L	1	USEPA 200.8	Nitrobenzene	µg/L	50	USEPA 8260B		
Nickel - Ni	µg/∟ ug/l	1			µg/∟	50			
Zinc - Zn	μg/∟ ug/l	1		2,4-dillitiotoluene	µg/∟	50			
Total Petro	μg/∟ Ioum Hv	' drocarb	03EFA 200.0	Phenolic Compounds					
C_6 - C_9 fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041		
C ₁₀ -C ₁₄ fraction	ua/l	50	USEPA 8000	2-chlorophenol	ua/l	10	USEPA 8041		
C_{15} - C_{28} fraction	ug/L	100	USEPA 8000	4-chlorophenol	μg/L μg/L	10	USEPA 8041		
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041		
	BT	EX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041		
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041		
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041		
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041		
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous l	Paramet	ters		
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN		
Polyciclic Are	omatic H	lydrocai	rbons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C		
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510		
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+		
OrganoCl	hlorine F	Pesticide	es (OCPs)	OrganoPhosphate Pesticides (OPPs)					
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141		
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141		
DDT	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141		
Dieldrin	μg/L	0.001	USEPA 8081	Dimethoate	μg/L	0.01	USEPA 8141		
Endosulfan	μg/L	0.001	USEPA 8081	Fenitrothion	μg/L	0.01	USEPA 8141		
Endrin	μg/L	0.001	USEPA 8081	Malathion	μg/L	0.01	USEPA 8141		
Heptachlor	μg/L	0.001	USEPA 8081	Parathion	μg/L	0.01	USEPA 8141		
Lindane	μg/L	0.001	USEPA 8081	Iemephos	μg/L	0.01	USEPA 8141		
Toxaphene	μg/L	0.001	USEPA 8081	Polychlorinated Biphenyls (PCBs)					
				Individual PCBs	μg/L	0.01	USEPA 8081		

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

I	able QC5 - QC Sample Data Acce	ptance Criteria
QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean} (X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL)
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>
Laboratory prepared Trip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%
	Laboratory QC	
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample results > 10 LOR
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)
Matrix Spikes Laboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>
Note: PQL - Laboratory Practica LOR = Limit of Reporting	al Quantitation Limit (PQL) or the minimum detection I	limit for a particular analyte.

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.
Calibration Check Standard & Blank	Calibration Standards are checked old versus new with a criteria of $\pm 10\%$

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".							
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.							
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.							
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.							
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests. All recoveries are to be reported to 3 significant figures.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: Inorganics (water samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike^d Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS ^d/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ± 2 standard deviations of the expected value. 							

	Organics
	• Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	Retention times are to vary by no more than 0.2 min.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
All recoveries are to be reported to 3 significant figures.	• Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS⁴/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ⁴ Matrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK_DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS